In Silico Models for Skin Sensitization and Irritation

化妆品 皮肤致敏 皮肤刺激 风险分析(工程) 背景(考古学) 敏化 风险评估 过程(计算) 刺激 计算机科学 生化工程 医学 工程类 皮肤病科 计算机安全 生物 古生物学 病理 免疫学 操作系统
作者
Gianluca Selvestrel,Federica Robino,Matteo Zanotti Russo
出处
期刊:Methods in molecular biology 卷期号:: 291-354 被引量:8
标识
DOI:10.1007/978-1-0716-1960-5_13
摘要

The assessment of skin irritation, and in particular of skin sensitization, has undergone an evolution process over the last years, pushing forward to new heights of quality and innovation. Public and commercial in silico tools have been developed for skin sensitization and irritation, introducing the possibility to simplify the evaluation process and the development of topical products within the dogma of the computational methods, representing the new doctrine in the field of risk assessment.The possibility of using in silico methods is particularly appealing and advantageous due to their high speed and low-cost results.The most widespread and popular topical products are represented by cosmetics. The European Regulation 1223/2009 on cosmetic products represents a paradigm shift for the safety assessment of cosmetics transitioning from a classical toxicological approach based on animal testing, towards a completely novel strategy, where the use of animals for toxicity testing is completely banned. In this context sustainable alternatives to animal testing need to be developed, especially for skin sensitization and irritation, two critical and fundamental endpoints for the assessment of cosmetics.The Quantitative Risk Assessment (QRA) methodology and the risk assessment using New Approach Methodologies (NAM) represent new frontiers to further improve the risk assessment process for these endpoints, in particular for skin sensitization.In this chapter we present an overview of the already existing models for skin sensitization and irritation. Some examples are presented here to illustrate tools and platforms used for the evaluation of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
几酝完成签到 ,获得积分10
1秒前
希望天下0贩的0应助小洋采纳,获得10
1秒前
小十一发布了新的文献求助10
2秒前
2秒前
畅快访蕊发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
哈哈哈哈哈哈完成签到,获得积分20
5秒前
九月完成签到,获得积分10
7秒前
csz515发布了新的文献求助10
8秒前
8秒前
小蘑菇应助冷艳的冬萱采纳,获得10
9秒前
善学以致用应助REad采纳,获得10
9秒前
慕青应助无糖乌龙茶采纳,获得10
9秒前
9秒前
Jerry完成签到,获得积分10
10秒前
10秒前
天秀之合完成签到,获得积分10
10秒前
10秒前
HXXXY完成签到,获得积分10
11秒前
ccm应助小十一采纳,获得10
11秒前
12秒前
12秒前
13秒前
13秒前
酒九发布了新的文献求助10
13秒前
善学以致用应助zwww采纳,获得10
13秒前
orixero应助周华强采纳,获得10
15秒前
yixiaolou发布了新的文献求助10
15秒前
李爱国应助迷了路的猫采纳,获得10
16秒前
18秒前
LilG完成签到,获得积分10
18秒前
mingjie发布了新的文献求助10
19秒前
贾克斯发布了新的文献求助10
19秒前
21秒前
Ava应助Liexinun采纳,获得10
21秒前
知不道给123的求助进行了留言
21秒前
21秒前
zxj发布了新的文献求助10
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570