亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Age- and Sex-Specific Differences in Multimorbidity Patterns and Temporal Trends on Assessing Hospital Discharge Records in Southwest China: Network-Based Study

医学 人口学 多发病率 中国 人口 疾病 队列 老年学 地理 环境卫生 病理 考古 社会学
作者
Liya Wang,Hang Qiu,Li Luo,Li Zhou
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:24 (2): e27146-e27146 被引量:32
标识
DOI:10.2196/27146
摘要

Background Multimorbidity represents a global health challenge, which requires a more global understanding of multimorbidity patterns and trends. However, the majority of studies completed to date have often relied on self-reported conditions, and a simultaneous assessment of the entire spectrum of chronic disease co-occurrence, especially in developing regions, has not yet been performed. Objective We attempted to provide a multidimensional approach to understand the full spectrum of chronic disease co-occurrence among general inpatients in southwest China, in order to investigate multimorbidity patterns and temporal trends, and assess their age and sex differences. Methods We conducted a retrospective cohort analysis based on 8.8 million hospital discharge records of about 5.0 million individuals of all ages from 2015 to 2019 in a megacity in southwest China. We examined all chronic diagnoses using the ICD-10 (International Classification of Diseases, 10th revision) codes at 3 digits and focused on chronic diseases with ≥1% prevalence for each of the age and sex strata, which resulted in a total of 149 and 145 chronic diseases in males and females, respectively. We constructed multimorbidity networks in the general population based on sex and age, and used the cosine index to measure the co-occurrence of chronic diseases. Then, we divided the networks into communities and assessed their temporal trends. Results The results showed complex interactions among chronic diseases, with more intensive connections among males and inpatients ≥40 years old. A total of 9 chronic diseases were simultaneously classified as central diseases, hubs, and bursts in the multimorbidity networks. Among them, 5 diseases were common to both males and females, including hypertension, chronic ischemic heart disease, cerebral infarction, other cerebrovascular diseases, and atherosclerosis. The earliest leaps (degree leaps ≥6) appeared at a disorder of glycoprotein metabolism that happened at 25-29 years in males, about 15 years earlier than in females. The number of chronic diseases in the community increased over time, but the new entrants did not replace the root of the community. Conclusions Our multimorbidity network analysis identified specific differences in the co-occurrence of chronic diagnoses by sex and age, which could help in the design of clinical interventions for inpatient multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
samsijyu发布了新的文献求助10
2秒前
memory完成签到,获得积分10
4秒前
VDC发布了新的文献求助10
8秒前
陈梓锋完成签到 ,获得积分10
12秒前
15秒前
yyds完成签到,获得积分0
18秒前
asd完成签到 ,获得积分10
18秒前
19秒前
xlxu发布了新的文献求助10
22秒前
张萌发布了新的文献求助10
23秒前
27秒前
vida完成签到 ,获得积分10
28秒前
仰勒完成签到 ,获得积分10
31秒前
山川日月完成签到,获得积分10
31秒前
懒骨头兄发布了新的文献求助10
32秒前
猫猫祟完成签到 ,获得积分10
37秒前
点点点完成签到 ,获得积分10
43秒前
拼搏向上完成签到,获得积分10
43秒前
inyh59完成签到,获得积分10
44秒前
47秒前
刻苦的溪流完成签到,获得积分10
49秒前
49秒前
sofia发布了新的文献求助10
50秒前
大壮发布了新的文献求助10
52秒前
科目三应助inyh59采纳,获得10
53秒前
shimly0101xx发布了新的文献求助10
54秒前
xyy完成签到,获得积分20
56秒前
Hello应助samsijyu采纳,获得10
57秒前
Lulu完成签到 ,获得积分10
1分钟前
summer完成签到 ,获得积分10
1分钟前
1分钟前
情怀应助cc采纳,获得10
1分钟前
透彻含义发布了新的文献求助10
1分钟前
科研通AI6应助无限猫咪采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049