Inverse deep learning methods and benchmarks for artificial electromagnetic material design

计算机科学 深度学习 人工神经网络 超材料 标杆管理 Python(编程语言) 计算机工程 反向 人工智能 深层神经网络 计算科学 数学优化 光学 数学 物理 业务 操作系统 营销 几何学
作者
Simiao Ren,Ashwin M. Mahendra,Omar Khatib,Yang Deng,Willie J. Padilla,Jordan M. Malof
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:14 (10): 3958-3969 被引量:27
标识
DOI:10.1039/d1nr08346e
摘要

In this work we investigate the use of deep inverse models (DIMs) for designing artificial electromagnetic materials (AEMs) - such as metamaterials, photonic crystals, and plasmonics - to achieve some desired scattering properties (e.g., transmission or reflection spectrum). DIMs are deep neural networks (i.e., deep learning models) that are specially-designed to solve ill-posed inverse problems. There has recently been tremendous growth in the use of DIMs for solving AEM design problems however there has been little comparison of these approaches to examine their absolute and relative performance capabilities. In this work we compare eight state-of-the-art DIMs on three unique AEM design problems, including two models that are novel to the AEM community. Our results indicate that DIMs can rapidly produce accurate designs to achieve a custom desired scattering on all three problems. Although no single model always performs best, the Neural-Adjoint approach achieves the best overall performance across all problem settings. As a final contribution we show that not all AEM design problems are ill-posed, and in such cases a conventional deep neural network can perform better than DIMs. We recommend that a deep neural network is always employed as a simple baseline approach when addressing AEM design problems. We publish python code for our AEM simulators and our DIMs to enable easy replication of our results, and benchmarking of new DIMs by the AEM community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不吃鱼发布了新的文献求助10
刚刚
钨昂汪发布了新的文献求助10
1秒前
Hello应助xmhxpz采纳,获得10
1秒前
英俊的铭应助nns采纳,获得10
3秒前
猪猪hero发布了新的文献求助10
4秒前
Lynn应助戊子采纳,获得10
5秒前
5秒前
6秒前
7秒前
Lynn应助陈昭琼采纳,获得10
8秒前
纯子完成签到,获得积分10
8秒前
阔达萧完成签到,获得积分10
10秒前
汉堡包应助酷炫小笼包采纳,获得10
10秒前
梁梁完成签到,获得积分20
11秒前
11秒前
纯子发布了新的文献求助10
11秒前
小王发布了新的文献求助10
12秒前
彭于晏应助Wyu采纳,获得10
12秒前
Polymer72应助sukasuka采纳,获得10
13秒前
充电宝应助歪歪吸采纳,获得10
14秒前
14秒前
15秒前
dandan发布了新的文献求助100
17秒前
11发布了新的文献求助10
17秒前
17秒前
姽婳wy发布了新的文献求助10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
19秒前
Owen应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
lucky_完成签到 ,获得积分10
20秒前
tricker发布了新的文献求助10
20秒前
乐乐发布了新的文献求助10
20秒前
含蓄大雁完成签到,获得积分10
21秒前
领导范儿应助纯子采纳,获得10
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397025
求助须知:如何正确求助?哪些是违规求助? 3006374
关于积分的说明 8820911
捐赠科研通 2693511
什么是DOI,文献DOI怎么找? 1475361
科研通“疑难数据库(出版商)”最低求助积分说明 682396
邀请新用户注册赠送积分活动 675703