已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lithium-Ion Battery Health Prediction on Hybrid Vehicles Using Machine Learning Approach

健康状况 电池(电) 汽车工程 电动汽车 电池组 练习场 荷电状态 计算机科学 Boosting(机器学习) 锂离子电池 可靠性工程 工程类 人工智能 量子力学 物理 功率(物理)
作者
Sadiqa Jafari,Zeinab Shahbazi,Yung-Cheol Byun
出处
期刊:Energies [MDPI AG]
卷期号:15 (13): 4753-4753 被引量:17
标识
DOI:10.3390/en15134753
摘要

Efforts to decarbonize the world have shown a quick increase in electric vehicles (EVs), limiting increasing pollution. During this electric transportation revolution, lithium-ion batteries (LIBs) play a vital role in storing energy. To determine the range of an electric vehicle (EV), the state of charge and the state of health (SOH) of the battery pack is essential. Access to high-quality data on battery parameters is a crucial challenge for researchers working in the energy storage domain due primarily to confidentiality constraints on manufacturers of batteries and EVs. This paper proposes a hybrid framework for predicting the state of a lithium-ion battery for electric vehicles (EV). Electric vehicles are growing worldwide because of their environmental and sustainability advantages. Batteries are replacing fossil fuels in electric vehicles. In order to prevent failure, Li-ion batteries in electric vehicles should be operated and controlled in a controlled and progressive manner to ensure increased efficiency and safety. An extreme gradient boosting (XGBoost) algorithm is used in this paper to estimate the state of health (SOH) of lithium-ion batteries used in electric vehicles. The model is subjected to error analysis to optimize the battery’s performance parameter. The model undergoes an error analysis to optimize its performance parameters. Furthermore, a state of health (SOH) estimation method based on the extreme gradient boosting algorithm with accuracy correction is proposed here to improve the accuracy of state of health (SOH) estimation for lithium-ion batteries. To describe the aging process of batteries, we extract several features such as average voltages, voltage differences, current differences, and temperature differences. The extreme gradient boosting (XGBoost) model for estimating the state of health (SOH) of lithium-ion batteries is based on the ensemble learning algorithm’s higher prediction accuracy and generalization ability. Experimental results suggest that the boundary gradient lifting algorithm model is capable of more accurate prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
6秒前
小鹿斑比完成签到 ,获得积分10
7秒前
9秒前
mol完成签到,获得积分10
20秒前
20秒前
清风拂山岗应助zhong采纳,获得10
21秒前
21秒前
serendipity完成签到 ,获得积分10
21秒前
24秒前
24秒前
雪白的听寒完成签到 ,获得积分10
25秒前
彭于晏应助A灰机采纳,获得10
25秒前
大白发布了新的文献求助10
26秒前
雨濛濛发布了新的文献求助10
30秒前
老实的吐司完成签到 ,获得积分10
32秒前
张困困完成签到 ,获得积分10
32秒前
鳌小饭完成签到 ,获得积分10
33秒前
li完成签到 ,获得积分10
35秒前
123zyuyu完成签到,获得积分10
35秒前
36秒前
iWatchTheMoon应助mmm采纳,获得10
37秒前
在水一方应助陈天爱学习采纳,获得30
38秒前
echo完成签到 ,获得积分10
38秒前
小蘑菇应助雨濛濛采纳,获得10
42秒前
阿旭完成签到,获得积分10
43秒前
zhengzehong完成签到,获得积分10
47秒前
48秒前
oceanao应助123采纳,获得10
54秒前
Jj发布了新的文献求助10
54秒前
积极干饭完成签到 ,获得积分10
54秒前
不对也没错完成签到,获得积分10
54秒前
54秒前
儒雅的焦发布了新的文献求助10
56秒前
57秒前
123完成签到,获得积分20
59秒前
大力水手发布了新的文献求助10
59秒前
小弟朱生发布了新的文献求助10
1分钟前
1分钟前
热情的友瑶完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162132
求助须知:如何正确求助?哪些是违规求助? 2813202
关于积分的说明 7899183
捐赠科研通 2472372
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631314
版权声明 602142