Mapping irrigated croplands in China using a synergetic training sample generating method, machine learning classifier, and Google Earth Engine

灌溉 土地覆盖 遥感 环境科学 农用地 农业 地球观测 地理 农业工程 地图学 水文学(农业) 计算机科学 土地利用 工程类 生物 航空航天工程 土木工程 考古 岩土工程 卫星 生态学
作者
Chao Zhang,Jinwei Dong,Yanhua Xie,Xuezhen Zhang,Quansheng Ge
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102888-102888 被引量:26
标识
DOI:10.1016/j.jag.2022.102888
摘要

Agricultural irrigation is an important vehicle for increasing crop yield, but large-scale irrigation has posed great challenges to global and regional water availability and climate change via altering land–atmosphere interactions. The knowledge of irrigation distribution is essential to understand regional water cycles and guide agricultural management decision-making, but such information is scarce in China. We developed a remote sensing-dominated framework to map irrigated croplands in China at 500 m resolution using a synergetic training sample generating method, machine learning classifier, and a cloud computing platform (Google Earth Engine, GEE). To overcome the challenges of lacking nationwide training samples, we first produced two provisional irrigation maps by fusing statistics and MODIS-derived annual peak greenness indices. The two provisional irrigation maps were then spatially filtered with an existing irrigation product (GRIPC) to construct the initial training sample pool. Next, to enhance the robustness and cover more irrigated candidates, we screened and introduced the irrigated croplands in three land use/cover maps (CCI-LC, GLC_FCS, and NLCD) to supplement the training data pool. Afterward, we utilized locally adaptive random forest classifiers and data cubes (MODIS-derived spectral indices, climatic and topographic variables) to generate irrigation maps in each province of China on GEE. The resulting map outperformed other current irrigation maps with an overall accuracy of 79.2% . The map also showed a reasonable consistency with statistical data at the province and prefecture levels, with the determination coefficient (R2) of 0.89 and 0.77, respectively. In total, we identified 87.04 million hectares of irrigated croplands in mainland China in 2015. Using the resulting map and water use statistics, we found a high correlation between irrigation area and agricultural water use in Northwest, Northeast, and South China, and a low correlation in North China Plain. This map is expected to serve national water resource management and assist decision-making in improving agricultural adaption to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiao完成签到 ,获得积分10
刚刚
AAAA完成签到,获得积分10
1秒前
Lucas应助白白采纳,获得10
1秒前
深情安青应助可爱的秋采纳,获得10
1秒前
轩轩发布了新的文献求助10
1秒前
大模型应助刘世豪采纳,获得10
1秒前
2秒前
2秒前
song发布了新的文献求助10
2秒前
Lin发布了新的文献求助10
2秒前
Xiaorong完成签到,获得积分20
3秒前
久居i发布了新的文献求助10
4秒前
乐乐应助ZZY采纳,获得10
4秒前
LW完成签到,获得积分20
4秒前
王少通完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
wangq完成签到 ,获得积分10
6秒前
6秒前
6秒前
科研通AI6应助整齐的忆彤采纳,获得10
6秒前
7秒前
Xiaorong发布了新的文献求助10
7秒前
8秒前
8秒前
张千完成签到,获得积分10
9秒前
9秒前
英姑应助老迟到的元彤采纳,获得10
9秒前
吃一口芝士完成签到 ,获得积分10
10秒前
晴朗完成签到,获得积分10
10秒前
Leffzeng发布了新的文献求助10
10秒前
英姑应助林琬琪采纳,获得50
10秒前
10秒前
11秒前
LWQ完成签到,获得积分10
11秒前
十有五完成签到,获得积分10
11秒前
华仔应助橙子采纳,获得10
11秒前
打死小胖纸完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569