Mapping irrigated croplands in China using a synergetic training sample generating method, machine learning classifier, and Google Earth Engine

灌溉 土地覆盖 遥感 环境科学 农用地 农业 地球观测 地理 农业工程 地图学 水文学(农业) 计算机科学 土地利用 工程类 生态学 土木工程 考古 生物 卫星 岩土工程 航空航天工程
作者
Chao Zhang,Jinwei Dong,Yanhua Xie,Xuezhen Zhang,Quansheng Ge
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102888-102888 被引量:26
标识
DOI:10.1016/j.jag.2022.102888
摘要

Agricultural irrigation is an important vehicle for increasing crop yield, but large-scale irrigation has posed great challenges to global and regional water availability and climate change via altering land–atmosphere interactions. The knowledge of irrigation distribution is essential to understand regional water cycles and guide agricultural management decision-making, but such information is scarce in China. We developed a remote sensing-dominated framework to map irrigated croplands in China at 500 m resolution using a synergetic training sample generating method, machine learning classifier, and a cloud computing platform (Google Earth Engine, GEE). To overcome the challenges of lacking nationwide training samples, we first produced two provisional irrigation maps by fusing statistics and MODIS-derived annual peak greenness indices. The two provisional irrigation maps were then spatially filtered with an existing irrigation product (GRIPC) to construct the initial training sample pool. Next, to enhance the robustness and cover more irrigated candidates, we screened and introduced the irrigated croplands in three land use/cover maps (CCI-LC, GLC_FCS, and NLCD) to supplement the training data pool. Afterward, we utilized locally adaptive random forest classifiers and data cubes (MODIS-derived spectral indices, climatic and topographic variables) to generate irrigation maps in each province of China on GEE. The resulting map outperformed other current irrigation maps with an overall accuracy of 79.2% . The map also showed a reasonable consistency with statistical data at the province and prefecture levels, with the determination coefficient (R2) of 0.89 and 0.77, respectively. In total, we identified 87.04 million hectares of irrigated croplands in mainland China in 2015. Using the resulting map and water use statistics, we found a high correlation between irrigation area and agricultural water use in Northwest, Northeast, and South China, and a low correlation in North China Plain. This map is expected to serve national water resource management and assist decision-making in improving agricultural adaption to climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peter发布了新的文献求助30
刚刚
与于发布了新的文献求助10
刚刚
简单完成签到 ,获得积分10
1秒前
1秒前
1秒前
科研通AI6.1应助高很帅采纳,获得10
2秒前
2秒前
2秒前
3秒前
小远远完成签到,获得积分10
3秒前
4秒前
CipherSage应助Dave采纳,获得10
5秒前
tleeny发布了新的文献求助10
5秒前
陈惠123发布了新的文献求助10
6秒前
ka发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
莫123发布了新的文献求助10
10秒前
李健应助单身的绮菱采纳,获得10
10秒前
11秒前
打打应助Hibiscus95采纳,获得10
11秒前
12秒前
13秒前
胖Q完成签到 ,获得积分20
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
liciky完成签到 ,获得积分10
16秒前
潘健康发布了新的文献求助10
16秒前
复杂的乐蕊完成签到,获得积分10
16秒前
Dave发布了新的文献求助10
16秒前
林一发布了新的文献求助10
18秒前
今后应助积极的老鼠采纳,获得10
18秒前
彭于晏应助yuhan采纳,获得10
18秒前
sin3xas4sin3x完成签到,获得积分10
19秒前
20秒前
上官若男应助Rosemary采纳,获得10
20秒前
Lim1819完成签到 ,获得积分10
21秒前
脑洞疼应助小胡爱科研采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879