Mapping irrigated croplands in China using a synergetic training sample generating method, machine learning classifier, and Google Earth Engine

灌溉 土地覆盖 遥感 环境科学 农用地 农业 地球观测 地理 农业工程 地图学 水文学(农业) 计算机科学 土地利用 工程类 生物 航空航天工程 土木工程 考古 岩土工程 卫星 生态学
作者
Chao Zhang,Jinwei Dong,Yanhua Xie,Xuezhen Zhang,Quansheng Ge
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102888-102888 被引量:26
标识
DOI:10.1016/j.jag.2022.102888
摘要

Agricultural irrigation is an important vehicle for increasing crop yield, but large-scale irrigation has posed great challenges to global and regional water availability and climate change via altering land–atmosphere interactions. The knowledge of irrigation distribution is essential to understand regional water cycles and guide agricultural management decision-making, but such information is scarce in China. We developed a remote sensing-dominated framework to map irrigated croplands in China at 500 m resolution using a synergetic training sample generating method, machine learning classifier, and a cloud computing platform (Google Earth Engine, GEE). To overcome the challenges of lacking nationwide training samples, we first produced two provisional irrigation maps by fusing statistics and MODIS-derived annual peak greenness indices. The two provisional irrigation maps were then spatially filtered with an existing irrigation product (GRIPC) to construct the initial training sample pool. Next, to enhance the robustness and cover more irrigated candidates, we screened and introduced the irrigated croplands in three land use/cover maps (CCI-LC, GLC_FCS, and NLCD) to supplement the training data pool. Afterward, we utilized locally adaptive random forest classifiers and data cubes (MODIS-derived spectral indices, climatic and topographic variables) to generate irrigation maps in each province of China on GEE. The resulting map outperformed other current irrigation maps with an overall accuracy of 79.2% . The map also showed a reasonable consistency with statistical data at the province and prefecture levels, with the determination coefficient (R2) of 0.89 and 0.77, respectively. In total, we identified 87.04 million hectares of irrigated croplands in mainland China in 2015. Using the resulting map and water use statistics, we found a high correlation between irrigation area and agricultural water use in Northwest, Northeast, and South China, and a low correlation in North China Plain. This map is expected to serve national water resource management and assist decision-making in improving agricultural adaption to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的凝天完成签到,获得积分10
刚刚
1秒前
尼克的朱迪完成签到,获得积分10
1秒前
1秒前
大个应助谷大喵唔采纳,获得10
1秒前
23发布了新的文献求助10
1秒前
简单的铃铛完成签到 ,获得积分10
2秒前
2秒前
2秒前
科研通AI2S应助体贴啤酒采纳,获得10
2秒前
3秒前
大模型应助Water103采纳,获得10
3秒前
4秒前
儒雅沛凝发布了新的文献求助10
4秒前
4秒前
DXXX发布了新的文献求助10
5秒前
小不溜完成签到 ,获得积分10
5秒前
王汉韬发布了新的文献求助10
5秒前
科研通AI2S应助咕噜仔采纳,获得20
5秒前
11111111完成签到,获得积分10
5秒前
NexusExplorer应助皮蛋瘦肉周采纳,获得10
5秒前
6秒前
zbearupz完成签到,获得积分10
6秒前
xiao发布了新的文献求助10
7秒前
8秒前
8秒前
conghuiqu完成签到,获得积分10
8秒前
Superman完成签到 ,获得积分10
8秒前
哈哈呀发布了新的文献求助10
8秒前
大模型应助Yuki0616采纳,获得10
8秒前
牛肉干发布了新的文献求助10
9秒前
赘婿应助木子采纳,获得10
9秒前
JERRY发布了新的文献求助10
9秒前
木桶人plus完成签到,获得积分10
9秒前
9秒前
啦啦发布了新的文献求助10
10秒前
歪比巴卜完成签到,获得积分10
10秒前
star完成签到 ,获得积分10
10秒前
风中以菱发布了新的文献求助10
10秒前
田様应助lbx采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672