Mapping irrigated croplands in China using a synergetic training sample generating method, machine learning classifier, and Google Earth Engine

灌溉 土地覆盖 遥感 环境科学 农用地 农业 地球观测 地理 农业工程 地图学 水文学(农业) 计算机科学 土地利用 工程类 生物 航空航天工程 土木工程 考古 岩土工程 卫星 生态学
作者
Chao Zhang,Jinwei Dong,Yanhua Xie,Xuezhen Zhang,Quansheng Ge
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102888-102888 被引量:26
标识
DOI:10.1016/j.jag.2022.102888
摘要

Agricultural irrigation is an important vehicle for increasing crop yield, but large-scale irrigation has posed great challenges to global and regional water availability and climate change via altering land–atmosphere interactions. The knowledge of irrigation distribution is essential to understand regional water cycles and guide agricultural management decision-making, but such information is scarce in China. We developed a remote sensing-dominated framework to map irrigated croplands in China at 500 m resolution using a synergetic training sample generating method, machine learning classifier, and a cloud computing platform (Google Earth Engine, GEE). To overcome the challenges of lacking nationwide training samples, we first produced two provisional irrigation maps by fusing statistics and MODIS-derived annual peak greenness indices. The two provisional irrigation maps were then spatially filtered with an existing irrigation product (GRIPC) to construct the initial training sample pool. Next, to enhance the robustness and cover more irrigated candidates, we screened and introduced the irrigated croplands in three land use/cover maps (CCI-LC, GLC_FCS, and NLCD) to supplement the training data pool. Afterward, we utilized locally adaptive random forest classifiers and data cubes (MODIS-derived spectral indices, climatic and topographic variables) to generate irrigation maps in each province of China on GEE. The resulting map outperformed other current irrigation maps with an overall accuracy of 79.2% . The map also showed a reasonable consistency with statistical data at the province and prefecture levels, with the determination coefficient (R2) of 0.89 and 0.77, respectively. In total, we identified 87.04 million hectares of irrigated croplands in mainland China in 2015. Using the resulting map and water use statistics, we found a high correlation between irrigation area and agricultural water use in Northwest, Northeast, and South China, and a low correlation in North China Plain. This map is expected to serve national water resource management and assist decision-making in improving agricultural adaption to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助hygge采纳,获得10
刚刚
123发布了新的文献求助10
刚刚
dlutwcl发布了新的文献求助10
刚刚
Felixsun完成签到,获得积分20
1秒前
1秒前
1秒前
3秒前
3秒前
小布丁发布了新的文献求助10
4秒前
alice发布了新的文献求助20
5秒前
5秒前
无可无不可完成签到,获得积分10
6秒前
Darius完成签到,获得积分10
6秒前
6秒前
桐桐应助kun3812采纳,获得10
6秒前
成永福发布了新的文献求助10
7秒前
ball发布了新的文献求助10
7秒前
ww完成签到,获得积分10
7秒前
7秒前
星辰大海应助扶溪筠采纳,获得10
7秒前
华仔应助ysw采纳,获得10
8秒前
8秒前
9秒前
9秒前
俏皮的短靴完成签到,获得积分10
10秒前
chen发布了新的文献求助10
10秒前
云朵0810完成签到,获得积分10
10秒前
11秒前
李热热给李热热的求助进行了留言
11秒前
11秒前
haibing发布了新的文献求助10
12秒前
共享精神应助旷意采纳,获得10
13秒前
13秒前
13秒前
lisier完成签到,获得积分10
13秒前
13秒前
13秒前
ball完成签到,获得积分10
13秒前
14秒前
搜集达人应助碧蓝一德采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351701
求助须知:如何正确求助?哪些是违规求助? 4484725
关于积分的说明 13960182
捐赠科研通 4384369
什么是DOI,文献DOI怎么找? 2408910
邀请新用户注册赠送积分活动 1401467
关于科研通互助平台的介绍 1374968