Mapping irrigated croplands in China using a synergetic training sample generating method, machine learning classifier, and Google Earth Engine

灌溉 土地覆盖 遥感 环境科学 农用地 农业 地球观测 地理 农业工程 地图学 水文学(农业) 计算机科学 土地利用 工程类 生态学 土木工程 考古 生物 卫星 岩土工程 航空航天工程
作者
Chao Zhang,Jinwei Dong,Yanhua Xie,Xuezhen Zhang,Quansheng Ge
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102888-102888 被引量:26
标识
DOI:10.1016/j.jag.2022.102888
摘要

Agricultural irrigation is an important vehicle for increasing crop yield, but large-scale irrigation has posed great challenges to global and regional water availability and climate change via altering land–atmosphere interactions. The knowledge of irrigation distribution is essential to understand regional water cycles and guide agricultural management decision-making, but such information is scarce in China. We developed a remote sensing-dominated framework to map irrigated croplands in China at 500 m resolution using a synergetic training sample generating method, machine learning classifier, and a cloud computing platform (Google Earth Engine, GEE). To overcome the challenges of lacking nationwide training samples, we first produced two provisional irrigation maps by fusing statistics and MODIS-derived annual peak greenness indices. The two provisional irrigation maps were then spatially filtered with an existing irrigation product (GRIPC) to construct the initial training sample pool. Next, to enhance the robustness and cover more irrigated candidates, we screened and introduced the irrigated croplands in three land use/cover maps (CCI-LC, GLC_FCS, and NLCD) to supplement the training data pool. Afterward, we utilized locally adaptive random forest classifiers and data cubes (MODIS-derived spectral indices, climatic and topographic variables) to generate irrigation maps in each province of China on GEE. The resulting map outperformed other current irrigation maps with an overall accuracy of 79.2% . The map also showed a reasonable consistency with statistical data at the province and prefecture levels, with the determination coefficient (R2) of 0.89 and 0.77, respectively. In total, we identified 87.04 million hectares of irrigated croplands in mainland China in 2015. Using the resulting map and water use statistics, we found a high correlation between irrigation area and agricultural water use in Northwest, Northeast, and South China, and a low correlation in North China Plain. This map is expected to serve national water resource management and assist decision-making in improving agricultural adaption to climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助美好斓采纳,获得10
刚刚
正直的尔芙完成签到,获得积分10
刚刚
1秒前
3秒前
766485发布了新的文献求助10
3秒前
4秒前
优美紫槐发布了新的文献求助10
4秒前
飞快的羊青完成签到,获得积分10
4秒前
雨之夏日发布了新的文献求助10
5秒前
6秒前
6秒前
自信半梦完成签到,获得积分20
6秒前
微微发布了新的文献求助10
7秒前
Ava应助不忘初心采纳,获得10
8秒前
8秒前
秦小荷发布了新的文献求助10
9秒前
22335566发布了新的文献求助10
9秒前
又见三皮发布了新的文献求助30
9秒前
scifinder发布了新的文献求助10
10秒前
自信半梦发布了新的文献求助30
10秒前
jike发布了新的文献求助10
11秒前
刘威完成签到,获得积分10
11秒前
俊逸的凝珍完成签到,获得积分10
13秒前
729完成签到,获得积分20
13秒前
Ava应助111231采纳,获得10
15秒前
周公完成签到,获得积分20
18秒前
科研通AI2S应助雨之夏日采纳,获得30
18秒前
研友_VZG7GZ应助李梁采纳,获得10
18秒前
Jasper应助优美紫槐采纳,获得10
18秒前
欣喜的妙竹完成签到,获得积分10
19秒前
Zoe发布了新的文献求助10
21秒前
Layla发布了新的文献求助10
22秒前
可爱的函函应助时行舒采纳,获得10
22秒前
24秒前
Mency0101完成签到,获得积分10
24秒前
26秒前
27秒前
又见三皮完成签到,获得积分10
28秒前
英姑应助榴莲麦旋风采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605551
求助须知:如何正确求助?哪些是违规求助? 4690069
关于积分的说明 14862141
捐赠科研通 4701644
什么是DOI,文献DOI怎么找? 2542098
邀请新用户注册赠送积分活动 1507757
关于科研通互助平台的介绍 1472105