已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches

计算生物学 RNA结合蛋白 核糖核酸 生物 RNA剪接 表观遗传学 非编码RNA 遗传学 基因
作者
Hibah Shaath,Radhakrishnan Vishnubalaji,Ramesh Elango,Ahmed Kardousha,Zeyaul Islam,Rizwan Qureshi,Tanvir Alam,Prasanna R. Kolatkar,Nehad M. Alajez
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:86: 325-345 被引量:89
标识
DOI:10.1016/j.semcancer.2022.05.013
摘要

Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
所所应助kyt采纳,获得10
4秒前
孤独的大灰狼完成签到 ,获得积分10
5秒前
冰橙咖啡完成签到,获得积分10
6秒前
7秒前
8秒前
Andy发布了新的文献求助30
8秒前
小路小路一夜暴富完成签到,获得积分10
11秒前
Hresearch发布了新的文献求助10
12秒前
12秒前
柯科研完成签到,获得积分10
12秒前
科研通AI5应助鱼鳞飞飞采纳,获得10
14秒前
苏格拉底关注了科研通微信公众号
15秒前
Faine完成签到 ,获得积分10
17秒前
18秒前
小凡应助勤奋冰烟采纳,获得50
20秒前
百招发布了新的文献求助10
21秒前
21秒前
enoch完成签到 ,获得积分10
21秒前
劲秉应助科研通管家采纳,获得20
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得40
22秒前
Orange应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
23秒前
大个应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
23秒前
25秒前
wsb76发布了新的文献求助10
26秒前
27秒前
百招完成签到,获得积分10
28秒前
LJL发布了新的文献求助10
28秒前
李星翰发布了新的文献求助10
29秒前
崩溃的jingjing完成签到 ,获得积分10
31秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728901
求助须知:如何正确求助?哪些是违规求助? 3273952
关于积分的说明 9984034
捐赠科研通 2989273
什么是DOI,文献DOI怎么找? 1640253
邀请新用户注册赠送积分活动 779181
科研通“疑难数据库(出版商)”最低求助积分说明 748000