Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification

高光谱成像 自编码 鉴定(生物学) 模式识别(心理学) 支持向量机 业务流程重组 过程(计算) 一般化 人工智能 机器学习 深度学习 计算机科学 工程类 植物 生物 数学 制造工程 操作系统 数学分析 精益制造
作者
Liu Zhang,Dong Wang,Jincun Liu,Dong An
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:199: 107153-107153 被引量:26
标识
DOI:10.1016/j.compag.2022.107153
摘要

There are many maize seed varieties circulating on the Chinese market, some varieties will be added and eliminated by the government every year, and fake varieties cannot be exhaustively listed. Furthermore, the updating of some varieties requires retraining the entire model, which is time-consuming and laborious. This poses a huge challenge for the authenticity identification of varieties and online model updating. Herein, hyperspectral imaging (HSI) combined with incremental learning (IL) was used to solve this problem. A novel radial basis function-biomimetic pattern recognition (RBF-BPR) model for IL was proposed and compared with one-class support vector machine (OCSVM) and BPR models under two test schemes. Hyperspectral images of five varieties of maize seeds were collected, and convolutional autoencoder (CAE) was used to extract features to remove redundant information and improve the generalization ability of models. A unique hybrid model was designed for each variety respectively, and the IL process was simulated. In two test schemes, the overall correct acceptance rate (CAR) for the known varieties and the overall correct rejection rate (CRR) for the unknown varieties of CAE-RBF-BPR model both reached 100%, which was superior to CAE-OCSVM and CAE-BPR models. Especially after RBF was used to map data, the performance of RBF-BPR model had a qualitative improvement compared with the original BPR model. In summary, the proposed method can realize IL without accessing the old classes data, while meeting the requirements of identifying known varieties and rejecting unknown varieties. In addition, if some varieties are eliminated by the government in the future, the corresponding models can also be removed form the whole system. The combination of such method and HSI has a broad application prospect in the identification of maize seed varieties, thus avoiding the trouble of retraining entire model when some maize seed varieties need to be updated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李昕123发布了新的文献求助10
刚刚
刚刚
1秒前
Canyon完成签到,获得积分10
2秒前
刘l完成签到,获得积分10
2秒前
9699完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
破碎时间完成签到 ,获得积分10
4秒前
4秒前
4秒前
orixero应助忐忑的不可采纳,获得10
5秒前
科研通AI2S应助zhouyan采纳,获得10
5秒前
6秒前
蔡勇强发布了新的文献求助10
6秒前
小虫虫完成签到,获得积分10
6秒前
饼饼大王完成签到,获得积分10
6秒前
13013523252完成签到,获得积分10
6秒前
8秒前
hy发布了新的文献求助10
8秒前
科研通AI6应助tph采纳,获得10
9秒前
jesmblaq完成签到,获得积分10
10秒前
文静的夜阑完成签到,获得积分20
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
苹果有毒发布了新的文献求助10
11秒前
小石头完成签到,获得积分10
13秒前
14秒前
13013523252发布了新的文献求助10
14秒前
Jasper应助Walden采纳,获得10
14秒前
目土土完成签到 ,获得积分10
17秒前
海盐气泡水完成签到,获得积分10
18秒前
19秒前
十二十三完成签到 ,获得积分10
19秒前
20秒前
火星完成签到,获得积分20
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812