Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification

高光谱成像 自编码 鉴定(生物学) 模式识别(心理学) 支持向量机 业务流程重组 过程(计算) 一般化 人工智能 机器学习 深度学习 计算机科学 工程类 植物 生物 数学 制造工程 操作系统 数学分析 精益制造
作者
Liu Zhang,Dong Wang,Jincun Liu,Dong An
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107153-107153 被引量:26
标识
DOI:10.1016/j.compag.2022.107153
摘要

There are many maize seed varieties circulating on the Chinese market, some varieties will be added and eliminated by the government every year, and fake varieties cannot be exhaustively listed. Furthermore, the updating of some varieties requires retraining the entire model, which is time-consuming and laborious. This poses a huge challenge for the authenticity identification of varieties and online model updating. Herein, hyperspectral imaging (HSI) combined with incremental learning (IL) was used to solve this problem. A novel radial basis function-biomimetic pattern recognition (RBF-BPR) model for IL was proposed and compared with one-class support vector machine (OCSVM) and BPR models under two test schemes. Hyperspectral images of five varieties of maize seeds were collected, and convolutional autoencoder (CAE) was used to extract features to remove redundant information and improve the generalization ability of models. A unique hybrid model was designed for each variety respectively, and the IL process was simulated. In two test schemes, the overall correct acceptance rate (CAR) for the known varieties and the overall correct rejection rate (CRR) for the unknown varieties of CAE-RBF-BPR model both reached 100%, which was superior to CAE-OCSVM and CAE-BPR models. Especially after RBF was used to map data, the performance of RBF-BPR model had a qualitative improvement compared with the original BPR model. In summary, the proposed method can realize IL without accessing the old classes data, while meeting the requirements of identifying known varieties and rejecting unknown varieties. In addition, if some varieties are eliminated by the government in the future, the corresponding models can also be removed form the whole system. The combination of such method and HSI has a broad application prospect in the identification of maize seed varieties, thus avoiding the trouble of retraining entire model when some maize seed varieties need to be updated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
all发布了新的文献求助100
刚刚
刚刚
刚刚
JamesPei应助yel采纳,获得30
1秒前
Mp4完成签到,获得积分10
2秒前
共享精神应助勿明采纳,获得10
2秒前
大模型应助慕课魔芋采纳,获得10
3秒前
Mp4发布了新的文献求助10
5秒前
我是125发布了新的文献求助10
5秒前
xiemei完成签到 ,获得积分20
5秒前
5秒前
科研通AI5应助欣喜的颜演采纳,获得10
6秒前
kkkk完成签到,获得积分10
6秒前
7秒前
Rui完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
tangzanwayne完成签到 ,获得积分10
10秒前
打打应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
鑫鑫发布了新的文献求助10
11秒前
Didibabawoo发布了新的文献求助10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
十一应助科研通管家采纳,获得10
11秒前
asd_1应助科研通管家采纳,获得10
11秒前
沿途有你发布了新的文献求助10
12秒前
tao完成签到,获得积分10
12秒前
打打应助w_采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
海格发布了新的文献求助10
13秒前
14秒前
aaaaaa完成签到,获得积分10
14秒前
解niu完成签到,获得积分10
14秒前
Fanorm发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573492
求助须知:如何正确求助?哪些是违规求助? 3993796
关于积分的说明 12363945
捐赠科研通 3667080
什么是DOI,文献DOI怎么找? 2021013
邀请新用户注册赠送积分活动 1055202
科研通“疑难数据库(出版商)”最低求助积分说明 942593