Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification

高光谱成像 自编码 鉴定(生物学) 模式识别(心理学) 支持向量机 业务流程重组 过程(计算) 一般化 人工智能 机器学习 深度学习 计算机科学 工程类 植物 生物 数学 制造工程 精益制造 操作系统 数学分析
作者
Liu Zhang,Dong Wang,Jincun Liu,Dong An
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:199: 107153-107153 被引量:26
标识
DOI:10.1016/j.compag.2022.107153
摘要

There are many maize seed varieties circulating on the Chinese market, some varieties will be added and eliminated by the government every year, and fake varieties cannot be exhaustively listed. Furthermore, the updating of some varieties requires retraining the entire model, which is time-consuming and laborious. This poses a huge challenge for the authenticity identification of varieties and online model updating. Herein, hyperspectral imaging (HSI) combined with incremental learning (IL) was used to solve this problem. A novel radial basis function-biomimetic pattern recognition (RBF-BPR) model for IL was proposed and compared with one-class support vector machine (OCSVM) and BPR models under two test schemes. Hyperspectral images of five varieties of maize seeds were collected, and convolutional autoencoder (CAE) was used to extract features to remove redundant information and improve the generalization ability of models. A unique hybrid model was designed for each variety respectively, and the IL process was simulated. In two test schemes, the overall correct acceptance rate (CAR) for the known varieties and the overall correct rejection rate (CRR) for the unknown varieties of CAE-RBF-BPR model both reached 100%, which was superior to CAE-OCSVM and CAE-BPR models. Especially after RBF was used to map data, the performance of RBF-BPR model had a qualitative improvement compared with the original BPR model. In summary, the proposed method can realize IL without accessing the old classes data, while meeting the requirements of identifying known varieties and rejecting unknown varieties. In addition, if some varieties are eliminated by the government in the future, the corresponding models can also be removed form the whole system. The combination of such method and HSI has a broad application prospect in the identification of maize seed varieties, thus avoiding the trouble of retraining entire model when some maize seed varieties need to be updated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诗筠完成签到 ,获得积分10
1秒前
2秒前
4秒前
快乐小子发布了新的文献求助10
4秒前
深情安青应助1111222333采纳,获得10
8秒前
文静萤发布了新的文献求助10
9秒前
9秒前
11秒前
科研通AI2S应助dududu采纳,获得10
11秒前
13秒前
Zephyr发布了新的文献求助10
13秒前
14秒前
bo完成签到,获得积分10
15秒前
小树发布了新的文献求助10
15秒前
Dlan完成签到,获得积分10
16秒前
文静萤完成签到,获得积分20
19秒前
19秒前
Li完成签到 ,获得积分10
20秒前
小蘑菇应助健明采纳,获得10
20秒前
kxy完成签到,获得积分10
21秒前
小马甲应助fanfan采纳,获得10
22秒前
斯文败类应助冷静的鼠标采纳,获得10
23秒前
慕青应助charon采纳,获得10
24秒前
25秒前
27秒前
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
默初发布了新的文献求助30
28秒前
淡然平灵应助科研通管家采纳,获得10
28秒前
狗狗应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得10
29秒前
淡然觅荷发布了新的文献求助10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
29秒前
Owen应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
可研可言关注了科研通微信公众号
29秒前
科研通AI2S应助鱼大仙采纳,获得10
30秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343311
求助须知:如何正确求助?哪些是违规求助? 2970371
关于积分的说明 8643748
捐赠科研通 2650451
什么是DOI,文献DOI怎么找? 1451275
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661473