Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification

高光谱成像 自编码 鉴定(生物学) 模式识别(心理学) 支持向量机 业务流程重组 过程(计算) 一般化 人工智能 机器学习 深度学习 计算机科学 工程类 植物 生物 数学 制造工程 操作系统 数学分析 精益制造
作者
Liu Zhang,Dong Wang,Jincun Liu,Dong An
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107153-107153 被引量:26
标识
DOI:10.1016/j.compag.2022.107153
摘要

There are many maize seed varieties circulating on the Chinese market, some varieties will be added and eliminated by the government every year, and fake varieties cannot be exhaustively listed. Furthermore, the updating of some varieties requires retraining the entire model, which is time-consuming and laborious. This poses a huge challenge for the authenticity identification of varieties and online model updating. Herein, hyperspectral imaging (HSI) combined with incremental learning (IL) was used to solve this problem. A novel radial basis function-biomimetic pattern recognition (RBF-BPR) model for IL was proposed and compared with one-class support vector machine (OCSVM) and BPR models under two test schemes. Hyperspectral images of five varieties of maize seeds were collected, and convolutional autoencoder (CAE) was used to extract features to remove redundant information and improve the generalization ability of models. A unique hybrid model was designed for each variety respectively, and the IL process was simulated. In two test schemes, the overall correct acceptance rate (CAR) for the known varieties and the overall correct rejection rate (CRR) for the unknown varieties of CAE-RBF-BPR model both reached 100%, which was superior to CAE-OCSVM and CAE-BPR models. Especially after RBF was used to map data, the performance of RBF-BPR model had a qualitative improvement compared with the original BPR model. In summary, the proposed method can realize IL without accessing the old classes data, while meeting the requirements of identifying known varieties and rejecting unknown varieties. In addition, if some varieties are eliminated by the government in the future, the corresponding models can also be removed form the whole system. The combination of such method and HSI has a broad application prospect in the identification of maize seed varieties, thus avoiding the trouble of retraining entire model when some maize seed varieties need to be updated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
高高初柔发布了新的文献求助10
4秒前
ZY发布了新的文献求助10
6秒前
猪猪hero应助Quinna采纳,获得10
6秒前
诚心的大炮完成签到,获得积分10
7秒前
kikyo发布了新的文献求助10
7秒前
风清扬应助个性的傲安采纳,获得50
8秒前
标致绮露发布了新的文献求助10
8秒前
yishan101发布了新的文献求助20
8秒前
8秒前
9秒前
9秒前
10秒前
Alvin发布了新的文献求助10
10秒前
泰裤辣发布了新的文献求助10
11秒前
HOO关闭了HOO文献求助
12秒前
皆可完成签到 ,获得积分10
12秒前
xyff2002发布了新的文献求助10
13秒前
大个应助ZY采纳,获得10
13秒前
科研废完成签到,获得积分10
13秒前
樊樊完成签到,获得积分10
15秒前
猪猪hero应助觅海采纳,获得10
15秒前
15秒前
悦悦完成签到,获得积分10
16秒前
zkexuan完成签到,获得积分10
16秒前
丰富语儿发布了新的文献求助10
16秒前
皆可关注了科研通微信公众号
16秒前
吴南宛完成签到,获得积分20
19秒前
19秒前
wangmou完成签到,获得积分10
20秒前
小笼包发布了新的文献求助10
20秒前
20秒前
22秒前
Alpenliebe完成签到,获得积分10
23秒前
华仔应助默默的白莲采纳,获得10
24秒前
科研通AI2S应助Quinna采纳,获得30
25秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976