光热治疗
声动力疗法
纳米颗粒
磁共振成像
材料科学
光热效应
纳米技术
光动力疗法
化学
有机化学
医学
放射科
作者
Mei Wen,Xiaohan Liu,Nuo Yu,Pu Qiu,Daniel K. Macharia,Maoquan Li,Haijun Zhang,Zhigang Chen,Weishuai Lian
标识
DOI:10.1016/j.jcis.2022.06.116
摘要
Integrated theranostic nanoplatforms with multi-model imaging and therapeutic functions are attracting great attention in cancer treatments, while the design and preparation of such nanoplatforms remain an open challenge. Herein, we report hemoporfin@Cu9S8@MnO2 nanoparticles (H@Cu9S8@MnO2 NPs) as multifunctional nanoplatforms for magnetic resonance imaging-guided catalytically-assisted photothermal-sonodynamic therapies of tumors. Cu9S8 hollow spherical nanoparticles were firstly prepared by in-situ vulcanization of Cu2O, and the growth of MnO2 shell was realized by the reduction of manganese permanganate, where the hollow structure of Cu9S8 could be used to load hemoporfin sonosensitizer. Cu9S8@MnO2 nanoparticles with diameters of ∼ 130 nm exhibit increased photoabsorption in near-infrared (NIR) region (680-1100 nm) due to the plasmonic effect of Cu9S8, and the photothermal conversion efficiency is determined to be 32.5% under 1064 nm laser irradiation. Furthermore, MnO2 shells can mimic catalase to trigger the decomposition of endogenous H2O2 into O2 with a significant O2 elevation (14.7 mg L-1) within 8 min and then promote the production of 1O2 via sonodynamic effect of hemoporfin. Meanwhile, MnO2 shells provide the T1-weight magnetic resonance (MR) imaging function. When H@Cu9S8@MnO2 NPs solution is administered to the mice, the tumor growth can be effectively inhibited due to catalytically-assisted synergetic photothermal-sonodynamic therapies which have superior therapeutic effect compared to mono-model therapy alone. Thus, H@Cu9S8@MnO2 NPs present a promising strategy for the development of integrated theranostic nanoplatforms with multi-model imaging and therapy functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI