Achieving high insulating strength and energy storage properties of all-organic dielectric composites by surface morphology modification

材料科学 电介质 复合材料 介电损耗 电场 介电强度 介电常数 光电子学 物理 量子力学
作者
Qi‐Kun Feng,Jia‐Yao Pei,Yongxin Zhang,Dongli Zhang,Di‐Fan Liu,Jiang‐Bo Ping,Zhi‐Min Dang
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:226: 109545-109545 被引量:14
标识
DOI:10.1016/j.compscitech.2022.109545
摘要

Dielectric polymers with high energy density have received widespread attention in the fields of modern electronics and power systems. Thus far, it is urgent to increase stored energy density of dielectric materials owing to the unappeasable energy density of the current commercial dielectric film caused by the inherent low dielectric constant. Herein, all-organic blended dielectric films consisting of acrylonitrile butadiene rubber (NBR) as organic fillers and poly (vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) as matrix were fabricated. Moreover, thermal treatment including hot press and quenching process was utilized to modify the surface roughness of films. It is demonstrated that flattened surfaces of prepared films with thermal treatment can result in reduction of local electric field distortion and charge injection. An elevated breakdown strength of 510 MV/m, which is 113.8% of P(VDF-HFP) films, and a raised dielectric permittivity of 10.08, which is 116.5% of P(VDF-HFP) films, have been achieved in the thermal treated NBR/P(VDF-HFP) films with 2 wt % loading under room temperature conditions. The enhanced insulating strength could be resulted from the smooth surface morphology by thermal treatment and mitigatory electric field distortion. Consequently, a high energy density of 11.3 J/cm3 is obtained concurrently. In addition, numerical simulations including finite element methods and phase field calculations are calculated to explain the facilitation of insulating properties. The all-organic dielectric polymer with thermal treatment provides a feasible example for fabricating energy storage dielectrics with high breakdown strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1221211应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得30
刚刚
zdd完成签到 ,获得积分20
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
喜悦中道应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
1221211应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
巴巴塔应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
典雅的谷槐完成签到,获得积分10
1秒前
prosperp应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
贪玩的笑阳完成签到,获得积分10
2秒前
3秒前
江城发布了新的文献求助10
3秒前
kevin发布了新的文献求助20
3秒前
菜菜完成签到,获得积分10
3秒前
chillin完成签到 ,获得积分10
4秒前
大壮完成签到,获得积分10
4秒前
4秒前
七七发布了新的文献求助10
4秒前
tu完成签到,获得积分20
4秒前
江任意西完成签到 ,获得积分10
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762