荧光
菁
化学
荧光团
光化学
苯并噻唑
量子产额
发色团
有机化学
物理
量子力学
作者
Atanas Kurutos,Yutaka Shindo,Yuki Hiruta,Kotaro Oka,Daniel Citterio
标识
DOI:10.1016/j.dyepig.2022.110424
摘要
The design, synthesis, and bio-applicability of a series of 8 near-infrared (NIR) molecular probes with tunable hydrophilic/hydrophobic properties are described in this paper. The title dyes comprise of symmetric heptamethine cyanines with various N-quaternary heterocyclic moieties including indole, benzo[e]indol, benzothiazole and naphtho[1,2-d]thiazole, along with an extra positive charge in close proximity to the polymethine backbone. Combined UV–Vis and spectrofluorimetric techniques in both organic and aqueous-buffered solutions were employed to investigate the optical properties of the NIR chromophores. Two of the fluorophores emerged remarkable fluorescence quantum yield (Φ = 0.083), while their brightness was found up to 3-fold that of the FDA approved Indocyanine green – ICG (Φ = 0.027). What is more, two of the dyes appear to outperform the later clinical benchmark fluorophore in terms of photostability. While the ICG was completely faded after 1 h of constant irradiation, nearly 70% of the original emission signal could be observed for one of the novel molecular probes. The log Pow values determined by a combination of HPLC and UV–Vis (partition between 1-octanol/water) cover a relatively large range, from −2.14 up to 7.92. Investigation on the cytotoxicity by means of the MTT assay revealed, that present dyes are suitable for bioanalytical purposes and are safe to use. This paper also includes fluorescence imaging and cellular applications, such as labeling of HeLa cervical cancer cells. The results from the confocal microscopy reveal the superior staining capability of current heptamethines since they show significantly brighter signal than the commercial ICG probe. An organelle-selective fluorescent staining was achieved depending on the dye chemical structure. Co-localization within the intracellular microenvironment (linear or granular - cytosol, mitochondria, lysosome, endoplasmatic reticulum or Golgi apparatus) was confirmed without interference, employing several conventional organelle dye trackers. To the best of our knowledge, heptamethine dyes represent the first example of a series NIR emitting probes, that exhibit rational structural modifications aiming to fine-tune the hydrophilic/hydrophobic properties furnishing organelle-targeted staining.
科研通智能强力驱动
Strongly Powered by AbleSci AI