Prediction of the driver’s focus of attention based on feature visualization of a deep autonomous driving model

计算机科学 可解释性 人工智能 卷积神经网络 可视化 光学(聚焦) 深度学习 特征(语言学) RGB颜色模型 语义特征 基本事实 背景(考古学) 机器学习 模式识别(心理学) 哲学 古生物学 物理 光学 生物 语言学
作者
Tao Huang,Rui Fu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109006-109006 被引量:10
标识
DOI:10.1016/j.knosys.2022.109006
摘要

Driver focus of attention (DFoA) is a fundamental research problem in human-like autonomous driving systems. However, most existing methods require large amounts of ground-truth DFoA data for training, which are difficult to collect. Inspired by the visual interpretability of neural networks, this study innovatively developed a DFoA prediction method based on the feature visualization of a deep autonomous driving model that does not require ground-truth DFoA data to train. Here, we propose a multimodal spatiotemporal convolutional network with an attention mechanism for DFoA prediction. First, semantic and depth images were generated from RGB video frames to enable the multipath convolutional network to learn the spatiotemporal information of successive images. A parameter-free attention mechanism with 3-D weights was incorporated as an energy function to calculate the importance of each neuron. A graph attention network was used to learn the most driving behavior-relevant semantic context features. The learned features were fused, and a convolutional long short-term memory network (ConvLSTM) was adopted to achieve the evolution of the fused features in successive frames while considering historical scene variation. Finally, a novel feature visualization method was designed to predict the DFoA by visualizing the driving behavior-relevant features. The experimental results demonstrated that the proposed method can accurately predict DFoA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ren发布了新的文献求助10
刚刚
秋子david发布了新的文献求助10
刚刚
所所应助biubiu采纳,获得10
刚刚
HXie完成签到,获得积分10
2秒前
2秒前
3秒前
shiny发布了新的文献求助10
4秒前
7秒前
牡丹城跑步的虾完成签到 ,获得积分10
7秒前
7秒前
ohh完成签到,获得积分10
8秒前
8秒前
kmkz发布了新的文献求助10
9秒前
10秒前
风中诗蕊发布了新的文献求助10
10秒前
orixero应助初末采纳,获得10
10秒前
12秒前
浮游应助十八鱼采纳,获得10
12秒前
shea发布了新的文献求助10
14秒前
英俊的铭应助秋子david采纳,获得10
14秒前
15秒前
15秒前
桃子发布了新的文献求助10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
changping应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
Hilda007应助飘逸的天菱采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
浮游应助Lojong采纳,获得10
18秒前
styrene应助灵巧胜采纳,获得10
21秒前
杋困了完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298580
求助须知:如何正确求助?哪些是违规求助? 4447072
关于积分的说明 13841540
捐赠科研通 4332544
什么是DOI,文献DOI怎么找? 2378222
邀请新用户注册赠送积分活动 1373488
关于科研通互助平台的介绍 1339077