Predicting the Molecular Models, Types, and Maturity of Kerogen in Shale Using Machine Learning and Multi-NMR Spectra

干酪根 油页岩 成熟度(心理) 页岩气 碳氢化合物 石油工程 计算机科学 生物系统 地质学 化学 烃源岩 有机化学 古生物学 心理学 发展心理学 构造盆地 生物
作者
Dongliang Kang,Ya‐Pu Zhao
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (11): 5749-5761 被引量:4
标识
DOI:10.1021/acs.energyfuels.2c00738
摘要

Kerogen is the primary hydrocarbon source of shale oil/gas. The kerogen types and maturity are the two most crucial indicators that can reflect the hydrocarbon generation potential of shale oil/gas reservoirs. These indicators and the other mechanochemical properties can be effectively studied in a bottom-up strategy using kerogen molecular models. Thus, the rapid construction of kerogen molecular models is the cornerstone of shale oil/gas exploitation research. Because of the combinatorial explosion problem, there are two inherent disadvantages of traditional methods: being time- and material-consuming and labor-intensive. We propose a new method that combines machine learning with multiple nuclear magnetic resonance spectra to intelligently and with a high throughput predict the kerogen structures, types, and maturity. Neither the manual analysis of experimental spectra nor the enormous trial-and-error process is required in our method. The 650,000 groups of samples are annotated as the sample datasets. Various spectral types can be analyzed comprehensively using the multi-spectral form, and the predictive capability beyond that of the single input form is obtained. The results demonstrate that the average similarity of prediction molecules and the targets is 91.78%. The prediction accuracy of kerogen components, types, and maturity indexes is better than 92.4%, and the coefficients of determination R2 are all over 0.934. The results exhibit the excellent comprehensive performance and effectiveness of our method. Thus, we anticipate that this work will shorten the research cycle and tremendously reduce costs in constructing kerogen models and predicting kerogen properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铱铱的胡萝卜完成签到,获得积分10
1秒前
wqidoctor发布了新的文献求助10
2秒前
甜橙完成签到 ,获得积分10
3秒前
澈哩发布了新的文献求助10
4秒前
5秒前
6秒前
乐乐应助武理采纳,获得10
6秒前
斯文败类应助包子采纳,获得10
8秒前
8秒前
波因斯坦完成签到,获得积分10
10秒前
王华瑞发布了新的文献求助10
11秒前
13秒前
自己发布了新的文献求助10
13秒前
齐静春完成签到,获得积分10
16秒前
TH发布了新的文献求助10
16秒前
酷波er应助张立人采纳,获得10
19秒前
zpl发布了新的文献求助10
20秒前
王华瑞完成签到,获得积分10
21秒前
22秒前
汉堡包应助开朗芸采纳,获得10
23秒前
CipherSage应助自己采纳,获得10
23秒前
研友_2484完成签到,获得积分10
23秒前
hyx完成签到 ,获得积分10
23秒前
zz完成签到,获得积分10
24秒前
刘六刘完成签到,获得积分10
25秒前
25秒前
汉堡包应助香云采纳,获得10
26秒前
skr发布了新的文献求助10
26秒前
追寻松发布了新的文献求助10
26秒前
和谐的饼干完成签到,获得积分10
26秒前
28秒前
科目三应助瓜田里的闰土采纳,获得30
28秒前
科研通AI2S应助sunshine采纳,获得20
29秒前
刘丽梅完成签到 ,获得积分10
30秒前
30秒前
张立人发布了新的文献求助10
31秒前
练得身形似鹤形完成签到 ,获得积分10
31秒前
32秒前
江辰汐月发布了新的文献求助20
32秒前
我是老大应助博修采纳,获得10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501