Predicting the Molecular Models, Types, and Maturity of Kerogen in Shale Using Machine Learning and Multi-NMR Spectra

干酪根 油页岩 成熟度(心理) 页岩气 碳氢化合物 石油工程 计算机科学 生物系统 地质学 化学 烃源岩 有机化学 古生物学 心理学 发展心理学 构造盆地 生物
作者
Dongliang Kang,Ya‐Pu Zhao
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (11): 5749-5761 被引量:4
标识
DOI:10.1021/acs.energyfuels.2c00738
摘要

Kerogen is the primary hydrocarbon source of shale oil/gas. The kerogen types and maturity are the two most crucial indicators that can reflect the hydrocarbon generation potential of shale oil/gas reservoirs. These indicators and the other mechanochemical properties can be effectively studied in a bottom-up strategy using kerogen molecular models. Thus, the rapid construction of kerogen molecular models is the cornerstone of shale oil/gas exploitation research. Because of the combinatorial explosion problem, there are two inherent disadvantages of traditional methods: being time- and material-consuming and labor-intensive. We propose a new method that combines machine learning with multiple nuclear magnetic resonance spectra to intelligently and with a high throughput predict the kerogen structures, types, and maturity. Neither the manual analysis of experimental spectra nor the enormous trial-and-error process is required in our method. The 650,000 groups of samples are annotated as the sample datasets. Various spectral types can be analyzed comprehensively using the multi-spectral form, and the predictive capability beyond that of the single input form is obtained. The results demonstrate that the average similarity of prediction molecules and the targets is 91.78%. The prediction accuracy of kerogen components, types, and maturity indexes is better than 92.4%, and the coefficients of determination R2 are all over 0.934. The results exhibit the excellent comprehensive performance and effectiveness of our method. Thus, we anticipate that this work will shorten the research cycle and tremendously reduce costs in constructing kerogen models and predicting kerogen properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助李小狼不浪采纳,获得30
1秒前
张文康发布了新的文献求助10
1秒前
精明秋完成签到,获得积分10
3秒前
4秒前
liang19640908完成签到 ,获得积分10
6秒前
7秒前
早早完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
吨吨吨发布了新的文献求助10
11秒前
xjcy应助WYF采纳,获得10
11秒前
移花宫甲发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
哇咔咔应助科研通管家采纳,获得10
14秒前
sll应助科研通管家采纳,获得10
14秒前
子车茗应助科研通管家采纳,获得20
14秒前
子车茗应助科研通管家采纳,获得20
14秒前
英姑应助科研通管家采纳,获得10
14秒前
zjspidany应助科研通管家采纳,获得20
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
耍酷醉山应助科研通管家采纳,获得10
14秒前
洪艳应助科研通管家采纳,获得50
14秒前
14秒前
15秒前
15秒前
15秒前
Akim应助科研通管家采纳,获得10
15秒前
GOD伟发布了新的文献求助10
15秒前
Nathan发布了新的文献求助10
15秒前
sy发布了新的文献求助10
17秒前
领导范儿应助大气的谷梦采纳,获得10
17秒前
19秒前
20秒前
xixi完成签到 ,获得积分10
21秒前
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267427
求助须知:如何正确求助?哪些是违规求助? 2906845
关于积分的说明 8339782
捐赠科研通 2577416
什么是DOI,文献DOI怎么找? 1400949
科研通“疑难数据库(出版商)”最低求助积分说明 654995
邀请新用户注册赠送积分活动 633900