Semisupervised fuzzy clustering for facies analysis using extended elastic impedance seismic attributes

地质学 地震属性 聚类分析 数据挖掘 模糊逻辑 地震学 岩石学 算法 计算机科学 人工智能 古生物学 构造盆地
作者
M. Mirzakhanian,Hosein Hashemi
标识
DOI:10.1190/geo2021-0330.1
摘要

A novel method in seismic facies analysis is proposed to resolve the discrepancy between well and seismic facies concepts. Extended elastic impedance (EEI) attributes are ideally suited for facies analysis because they are representative of different elastic parameters of rocks. A semisupervised method aims to accept or reject seismic clustering based on the well facies interpretation. First, specific EEI logs/attributes are calculated after a feasibility study and EEI analysis of the well data set are used for facies analysis. Using EEI logs as input attributes prevents data deficiency as a result of upscaling of well-log data to the seismic scale in the learning process. Then, the seismic EEI attributes are calculated from prestack seismic data and used for seismic facies analysis considering a fuzzy clustering algorithm with parameters estimated from the well facies analysis stage. The fuzzy clustering methods using membership degrees in their algorithms are valuable tools to reduce uncertainties. To evaluate the method’s performance, 3D seismic data of an oil sand reservoir were selected as a case study. The comparison with previous crossplot methods in facies modeling confirmed the advantages of the presented results in seismic facies analysis. The seismic facies sections are sufficiently interpretable according to the geologic setting and correlate more with the well facies codes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余笙发布了新的文献求助10
刚刚
充电宝应助冷傲迎梦采纳,获得10
刚刚
彭于晏应助qi采纳,获得30
刚刚
科研通AI2S应助shor0414采纳,获得10
刚刚
ponyy发布了新的文献求助30
1秒前
秋之月发布了新的文献求助10
2秒前
skier发布了新的文献求助10
3秒前
balabala完成签到,获得积分20
3秒前
隐形曼青应助kb采纳,获得10
4秒前
yanyan发布了新的文献求助10
6秒前
繁笙完成签到 ,获得积分10
6秒前
6秒前
无言完成签到 ,获得积分10
6秒前
NONO完成签到 ,获得积分10
7秒前
星辰大海应助TT采纳,获得10
7秒前
9秒前
康康完成签到,获得积分10
9秒前
Xv完成签到,获得积分0
9秒前
12秒前
12秒前
香蕉觅云应助zfzf0422采纳,获得10
12秒前
13秒前
13秒前
李健应助爱听歌的向日葵采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
烟花应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得80
14秒前
所所应助科研通管家采纳,获得20
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得30
15秒前
婷婷发布了新的文献求助10
15秒前
zzt完成签到,获得积分10
17秒前
张小汉发布了新的文献求助30
18秒前
二十四发布了新的文献求助10
18秒前
赘婿应助junzilan采纳,获得10
18秒前
FashionBoy应助勤恳的雨文采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824