Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach

计算机科学 利用 背景(考古学) 现存分类群 产品(数学) 数据科学 人工智能 服务(商务) 知识管理 机器学习 营销 业务 古生物学 几何学 计算机安全 数学 进化生物学 生物
作者
Zelin Zhang,Kejia Yang,Jonathan Z. Zhang,Robert W. Palmatier
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2339-2360 被引量:22
标识
DOI:10.1287/mnsc.2022.4443
摘要

Massive online text reviews can be a powerful market research tool for understanding consumer experiences and helping firms improve and innovate. This research exploits the rich semantic properties of text reviews and proposes a novel machine learning modeling framework that can reliably and efficiently extract consumer opinions and uncover potential interaction effects across these opinions, thereby identifying hidden and nuanced areas for product and service improvement beyond existing modeling approaches in this domain. In particular, we develop an opinion extraction and effect estimation framework that allows for uncovering customer opinions’ average effects and their interaction effects. Interactions among opinions can be synergistic when the co-occurrence of two opinions yields an effect greater than the sum of two parts, or as what we call dysergistic, when the co-occurrence of two opinions results in dampened effect. We apply the model in the context of large-scale customer ratings and text reviews for hotels and demonstrate our framework’s ability to screen synergy and dysergy effects among opinions. Our model also flexibly and efficiently accommodates a large number of opinions, which provides insights into rare yet potentially important opinions. The model can guide managers to prioritize joint areas of product and service improvement and innovation by uncovering the most prominent synergistic pairs. Model comparison with extant machine learning approaches demonstrates our improved predictive ability and managerial insights. This paper was accepted by Gui Liberali, marketing. Funding: The authors acknowledge the support of research funding from the National Natural Science Foundation of China [Grant 72072173]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4443 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李爱国应助DJ采纳,获得10
1秒前
1秒前
阿耒发布了新的文献求助10
1秒前
1秒前
DR_ZHANG发布了新的文献求助10
1秒前
echo发布了新的文献求助20
1秒前
852应助危机的无极采纳,获得10
1秒前
思源应助QYF采纳,获得10
1秒前
huhdcid发布了新的文献求助10
2秒前
kk完成签到,获得积分10
3秒前
3秒前
3秒前
浮游应助LYF采纳,获得50
3秒前
daq完成签到,获得积分10
3秒前
4秒前
ink发布了新的文献求助10
4秒前
mkmkm发布了新的文献求助10
4秒前
4秒前
小二郎应助北冥鱼采纳,获得10
4秒前
wyq发布了新的文献求助10
4秒前
4秒前
窦誉完成签到,获得积分10
5秒前
5秒前
蜘蛛人完成签到 ,获得积分10
5秒前
5秒前
yu完成签到,获得积分10
5秒前
5秒前
yznfly应助real采纳,获得20
6秒前
彩色的荔枝完成签到 ,获得积分10
6秒前
6秒前
daq发布了新的文献求助10
7秒前
Sylwren完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得50
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
NexusExplorer应助落后钢铁侠采纳,获得20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869