Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach

计算机科学 利用 背景(考古学) 现存分类群 产品(数学) 数据科学 人工智能 服务(商务) 知识管理 机器学习 营销 业务 古生物学 几何学 计算机安全 数学 进化生物学 生物
作者
Zelin Zhang,Kejia Yang,Jonathan Z. Zhang,Robert W. Palmatier
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2339-2360 被引量:13
标识
DOI:10.1287/mnsc.2022.4443
摘要

Massive online text reviews can be a powerful market research tool for understanding consumer experiences and helping firms improve and innovate. This research exploits the rich semantic properties of text reviews and proposes a novel machine learning modeling framework that can reliably and efficiently extract consumer opinions and uncover potential interaction effects across these opinions, thereby identifying hidden and nuanced areas for product and service improvement beyond existing modeling approaches in this domain. In particular, we develop an opinion extraction and effect estimation framework that allows for uncovering customer opinions’ average effects and their interaction effects. Interactions among opinions can be synergistic when the co-occurrence of two opinions yields an effect greater than the sum of two parts, or as what we call dysergistic, when the co-occurrence of two opinions results in dampened effect. We apply the model in the context of large-scale customer ratings and text reviews for hotels and demonstrate our framework’s ability to screen synergy and dysergy effects among opinions. Our model also flexibly and efficiently accommodates a large number of opinions, which provides insights into rare yet potentially important opinions. The model can guide managers to prioritize joint areas of product and service improvement and innovation by uncovering the most prominent synergistic pairs. Model comparison with extant machine learning approaches demonstrates our improved predictive ability and managerial insights. This paper was accepted by Gui Liberali, marketing. Funding: The authors acknowledge the support of research funding from the National Natural Science Foundation of China [Grant 72072173]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4443 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang发布了新的文献求助10
1秒前
cyh完成签到,获得积分20
2秒前
研友_Z1eDgZ发布了新的文献求助10
3秒前
5秒前
SweetAndCool发布了新的文献求助10
6秒前
poco完成签到 ,获得积分10
6秒前
金豆发布了新的文献求助10
6秒前
7秒前
ding应助Wang采纳,获得10
9秒前
db发布了新的文献求助10
10秒前
上官若男应助lin01采纳,获得10
12秒前
girl发布了新的文献求助10
14秒前
卤化氢完成签到 ,获得积分10
15秒前
15秒前
彳亍1117应助束负允三金采纳,获得50
16秒前
一只鱼的故事完成签到,获得积分10
16秒前
花花完成签到,获得积分10
16秒前
17秒前
SweetAndCool完成签到,获得积分10
18秒前
db完成签到,获得积分10
20秒前
Yogita发布了新的文献求助10
20秒前
向天歌发布了新的文献求助20
21秒前
无花果应助顺心的水之采纳,获得10
21秒前
21秒前
断罪发布了新的文献求助10
22秒前
23秒前
所所应助小嘎采纳,获得10
25秒前
lin01发布了新的文献求助10
26秒前
26秒前
今后应助香菜味钠片采纳,获得10
26秒前
luguo发布了新的文献求助10
27秒前
吉乐园完成签到,获得积分10
28秒前
orixero应助Snoopy采纳,获得10
30秒前
浅眠发布了新的文献求助10
30秒前
乐乐应助wpk9904采纳,获得10
31秒前
NexusExplorer应助Max采纳,获得10
31秒前
Morianm完成签到,获得积分10
32秒前
媛媛子完成签到 ,获得积分20
33秒前
sallytan完成签到,获得积分10
34秒前
dyj完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870