Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach

计算机科学 利用 背景(考古学) 现存分类群 产品(数学) 数据科学 人工智能 服务(商务) 知识管理 机器学习 营销 业务 古生物学 几何学 计算机安全 数学 进化生物学 生物
作者
Zelin Zhang,Kejia Yang,Jonathan Z. Zhang,Robert W. Palmatier
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2339-2360 被引量:22
标识
DOI:10.1287/mnsc.2022.4443
摘要

Massive online text reviews can be a powerful market research tool for understanding consumer experiences and helping firms improve and innovate. This research exploits the rich semantic properties of text reviews and proposes a novel machine learning modeling framework that can reliably and efficiently extract consumer opinions and uncover potential interaction effects across these opinions, thereby identifying hidden and nuanced areas for product and service improvement beyond existing modeling approaches in this domain. In particular, we develop an opinion extraction and effect estimation framework that allows for uncovering customer opinions’ average effects and their interaction effects. Interactions among opinions can be synergistic when the co-occurrence of two opinions yields an effect greater than the sum of two parts, or as what we call dysergistic, when the co-occurrence of two opinions results in dampened effect. We apply the model in the context of large-scale customer ratings and text reviews for hotels and demonstrate our framework’s ability to screen synergy and dysergy effects among opinions. Our model also flexibly and efficiently accommodates a large number of opinions, which provides insights into rare yet potentially important opinions. The model can guide managers to prioritize joint areas of product and service improvement and innovation by uncovering the most prominent synergistic pairs. Model comparison with extant machine learning approaches demonstrates our improved predictive ability and managerial insights. This paper was accepted by Gui Liberali, marketing. Funding: The authors acknowledge the support of research funding from the National Natural Science Foundation of China [Grant 72072173]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4443 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
孤独梦安完成签到 ,获得积分10
3秒前
英俊完成签到,获得积分10
3秒前
乐乐应助风格化橙采纳,获得10
4秒前
喜悦发卡完成签到,获得积分10
5秒前
活力的泥猴桃完成签到 ,获得积分10
6秒前
7秒前
xinxinwen完成签到,获得积分10
7秒前
8秒前
8秒前
EMMA发布了新的文献求助10
9秒前
Cc关闭了Cc文献求助
9秒前
TTRO完成签到,获得积分10
9秒前
m_seek完成签到,获得积分10
10秒前
木心长发布了新的文献求助10
11秒前
11秒前
土二给土二的求助进行了留言
11秒前
12秒前
在水一方应助十五采纳,获得10
14秒前
Yzh完成签到,获得积分10
14秒前
smile发布了新的文献求助10
15秒前
Michael Zhang完成签到 ,获得积分10
15秒前
邓年念发布了新的文献求助10
16秒前
云那边的山发布了新的文献求助300
17秒前
英姑应助EMMA采纳,获得10
18秒前
浮游应助xxx采纳,获得10
19秒前
深情安青应助小王采纳,获得30
19秒前
AIKaikai发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
怕孤独的聪展完成签到,获得积分10
25秒前
26秒前
26秒前
李健的小迷弟应助Lisa田采纳,获得20
26秒前
26秒前
邓年念完成签到,获得积分10
29秒前
29秒前
Windsea完成签到,获得积分10
29秒前
李健应助苟文锋采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452