Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach

计算机科学 利用 背景(考古学) 现存分类群 产品(数学) 数据科学 人工智能 服务(商务) 知识管理 机器学习 营销 业务 古生物学 几何学 生物 进化生物学 计算机安全 数学
作者
Zelin Zhang,Kejia Yang,Jonathan Z. Zhang,Robert W. Palmatier
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2339-2360 被引量:22
标识
DOI:10.1287/mnsc.2022.4443
摘要

Massive online text reviews can be a powerful market research tool for understanding consumer experiences and helping firms improve and innovate. This research exploits the rich semantic properties of text reviews and proposes a novel machine learning modeling framework that can reliably and efficiently extract consumer opinions and uncover potential interaction effects across these opinions, thereby identifying hidden and nuanced areas for product and service improvement beyond existing modeling approaches in this domain. In particular, we develop an opinion extraction and effect estimation framework that allows for uncovering customer opinions’ average effects and their interaction effects. Interactions among opinions can be synergistic when the co-occurrence of two opinions yields an effect greater than the sum of two parts, or as what we call dysergistic, when the co-occurrence of two opinions results in dampened effect. We apply the model in the context of large-scale customer ratings and text reviews for hotels and demonstrate our framework’s ability to screen synergy and dysergy effects among opinions. Our model also flexibly and efficiently accommodates a large number of opinions, which provides insights into rare yet potentially important opinions. The model can guide managers to prioritize joint areas of product and service improvement and innovation by uncovering the most prominent synergistic pairs. Model comparison with extant machine learning approaches demonstrates our improved predictive ability and managerial insights. This paper was accepted by Gui Liberali, marketing. Funding: The authors acknowledge the support of research funding from the National Natural Science Foundation of China [Grant 72072173]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4443 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是哇哦发布了新的文献求助10
1秒前
科目三应助咕噜咕噜采纳,获得10
1秒前
chenchunlan96完成签到,获得积分10
1秒前
1秒前
2秒前
汉堡包应助LLLLLJJXX采纳,获得10
3秒前
wang完成签到,获得积分10
3秒前
xc发布了新的文献求助10
4秒前
刘星宇发布了新的文献求助30
5秒前
6秒前
PhD-SCAU发布了新的文献求助10
7秒前
8秒前
8秒前
乐乘发布了新的文献求助20
8秒前
量子星尘发布了新的文献求助10
9秒前
是哇哦完成签到,获得积分20
9秒前
田様应助sun采纳,获得10
9秒前
123发布了新的文献求助10
11秒前
今后应助pppppppppppppppp采纳,获得10
11秒前
aaa4完成签到,获得积分10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得20
12秒前
浮游应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得30
13秒前
cc发布了新的文献求助10
13秒前
ccm应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
啊哦发布了新的文献求助10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
13秒前
无极微光应助科研通管家采纳,获得20
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
所所应助Zyou采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851