已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach

计算机科学 利用 背景(考古学) 现存分类群 产品(数学) 数据科学 人工智能 服务(商务) 知识管理 机器学习 营销 业务 古生物学 几何学 生物 进化生物学 计算机安全 数学
作者
Zelin Zhang,Kejia Yang,Jonathan Z. Zhang,Robert W. Palmatier
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2339-2360 被引量:22
标识
DOI:10.1287/mnsc.2022.4443
摘要

Massive online text reviews can be a powerful market research tool for understanding consumer experiences and helping firms improve and innovate. This research exploits the rich semantic properties of text reviews and proposes a novel machine learning modeling framework that can reliably and efficiently extract consumer opinions and uncover potential interaction effects across these opinions, thereby identifying hidden and nuanced areas for product and service improvement beyond existing modeling approaches in this domain. In particular, we develop an opinion extraction and effect estimation framework that allows for uncovering customer opinions’ average effects and their interaction effects. Interactions among opinions can be synergistic when the co-occurrence of two opinions yields an effect greater than the sum of two parts, or as what we call dysergistic, when the co-occurrence of two opinions results in dampened effect. We apply the model in the context of large-scale customer ratings and text reviews for hotels and demonstrate our framework’s ability to screen synergy and dysergy effects among opinions. Our model also flexibly and efficiently accommodates a large number of opinions, which provides insights into rare yet potentially important opinions. The model can guide managers to prioritize joint areas of product and service improvement and innovation by uncovering the most prominent synergistic pairs. Model comparison with extant machine learning approaches demonstrates our improved predictive ability and managerial insights. This paper was accepted by Gui Liberali, marketing. Funding: The authors acknowledge the support of research funding from the National Natural Science Foundation of China [Grant 72072173]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4443 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Delight完成签到 ,获得积分0
2秒前
星辰大海应助欧耶椰椰采纳,获得10
2秒前
3秒前
3秒前
英俊的铭应助忧虑的翠彤采纳,获得10
4秒前
欢呼洋葱发布了新的文献求助10
4秒前
惜缘灬楪祈完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
踏实的傲白完成签到 ,获得积分0
8秒前
所所应助Aurora采纳,获得10
10秒前
机灵的忆梅完成签到 ,获得积分10
12秒前
Jinyang发布了新的文献求助10
12秒前
搜集达人应助阔达宝莹采纳,获得10
13秒前
回忆告白发布了新的文献求助20
15秒前
simple发布了新的文献求助10
15秒前
15秒前
LINGXINYUE完成签到,获得积分10
17秒前
忧虑的翠彤完成签到,获得积分20
17秒前
许许欣冉完成签到,获得积分10
18秒前
libin完成签到,获得积分10
19秒前
小马驹完成签到 ,获得积分10
20秒前
小蘑菇应助孤独的小玉采纳,获得10
21秒前
Aurora发布了新的文献求助10
21秒前
22秒前
在水一方应助Jie采纳,获得10
23秒前
田様应助日尧采纳,获得30
25秒前
1234完成签到 ,获得积分10
25秒前
小二郎应助momo采纳,获得10
25秒前
天天快乐应助张雪婷采纳,获得10
28秒前
28秒前
寒冷的觅翠完成签到,获得积分10
29秒前
30秒前
30秒前
xuxingxing发布了新的文献求助10
31秒前
simple完成签到,获得积分10
33秒前
小二郎应助Jinyang采纳,获得10
33秒前
Jie发布了新的文献求助10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659218
关于积分的说明 14724003
捐赠科研通 4599058
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679