Deep diagnosis: A real-time apple leaf disease detection system based on deep learning

人工智能 计算机科学 RGB颜色模型 深度学习 同种类的 鉴定(生物学) 阶段(地层学) 模式识别(心理学) 机器学习 数学 生物 植物 组合数学 古生物学
作者
Asif Iqbal Khan,S. M. K. Quadri,Saba Banday,Junaid Latief Shah
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107093-107093 被引量:112
标识
DOI:10.1016/j.compag.2022.107093
摘要

Diseases and pests are one of the major reasons for low productivity of apples which in turn results in huge economic loss to the apple industry every year. Early detection of apple diseases can help in controlling the spread of infections and ensure better productivity. However, early diagnosis and identification of diseases is challenging due to many factors like, presence of multiple symptoms on same leaf, non-homogeneous background, differences in leaf colour due to age of infected cells, varying disease spot sizes etc. In this study, we first constructed an expert-annotated apple disease dataset of suitable size consisting around 9000 high quality RGB images covering all the main foliar diseases and symptoms. Next, we propose a deep learning based apple disease detection system which can efficiently and accurately identify the symptoms. The proposed system works in two stages, first stage is a tailor-made light weight classification model which classifies the input images into diseased, healthy or damaged categories and the second stage (detection stage) processing starts only if any disease is detected in first stage. Detection stage performs the actual detection and localization of each symptom from diseased leaf images. The proposed approach obtained encouraging results, reaching around 88% of classification accuracy and our best detection model achieved mAP of 42%. The preliminary results of this study look promising even on small or tiny spots. The qualitative results validate that the proposed system is effective in detecting various types of apple diseases and can be used as a practical tool by farmers and apple growers to aid them in diagnosis, quantification and follow-up of infections. Furthermore, in future, the work can be extended to other fruits and vegetables as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Roy完成签到,获得积分10
2秒前
微笑芒果完成签到 ,获得积分10
2秒前
9秒前
11秒前
迷人的寒风完成签到,获得积分10
14秒前
17秒前
薛言发布了新的文献求助10
18秒前
碧菡完成签到,获得积分10
23秒前
MUAN完成签到 ,获得积分10
28秒前
科目三应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
34秒前
量子星尘发布了新的文献求助10
38秒前
38秒前
39秒前
漂亮的战斗机完成签到 ,获得积分10
42秒前
hlm发布了新的文献求助10
43秒前
Bismarck完成签到,获得积分20
43秒前
李爱国应助Sy采纳,获得10
46秒前
千陽完成签到 ,获得积分10
56秒前
lixiang完成签到 ,获得积分10
56秒前
xuan完成签到,获得积分10
59秒前
1分钟前
刻苦努力的火龙果完成签到,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
zjq完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
CLTTT完成签到,获得积分10
1分钟前
科目三应助hlm采纳,获得10
1分钟前
Tong完成签到,获得积分0
1分钟前
六一儿童节完成签到 ,获得积分10
1分钟前
1分钟前
Sy完成签到,获得积分10
1分钟前
rita_sun1969完成签到,获得积分10
1分钟前
boymin2015完成签到 ,获得积分10
1分钟前
Sy发布了新的文献求助10
1分钟前
yar完成签到,获得积分0
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015541
求助须知:如何正确求助?哪些是违规求助? 3555522
关于积分的说明 11318076
捐赠科研通 3288696
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015