Deep diagnosis: A real-time apple leaf disease detection system based on deep learning

人工智能 计算机科学 RGB颜色模型 深度学习 同种类的 鉴定(生物学) 阶段(地层学) 模式识别(心理学) 机器学习 数学 生物 植物 组合数学 古生物学
作者
Asif Iqbal Khan,S. M. K. Quadri,Saba Banday,Junaid Latief Shah
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107093-107093 被引量:112
标识
DOI:10.1016/j.compag.2022.107093
摘要

Diseases and pests are one of the major reasons for low productivity of apples which in turn results in huge economic loss to the apple industry every year. Early detection of apple diseases can help in controlling the spread of infections and ensure better productivity. However, early diagnosis and identification of diseases is challenging due to many factors like, presence of multiple symptoms on same leaf, non-homogeneous background, differences in leaf colour due to age of infected cells, varying disease spot sizes etc. In this study, we first constructed an expert-annotated apple disease dataset of suitable size consisting around 9000 high quality RGB images covering all the main foliar diseases and symptoms. Next, we propose a deep learning based apple disease detection system which can efficiently and accurately identify the symptoms. The proposed system works in two stages, first stage is a tailor-made light weight classification model which classifies the input images into diseased, healthy or damaged categories and the second stage (detection stage) processing starts only if any disease is detected in first stage. Detection stage performs the actual detection and localization of each symptom from diseased leaf images. The proposed approach obtained encouraging results, reaching around 88% of classification accuracy and our best detection model achieved mAP of 42%. The preliminary results of this study look promising even on small or tiny spots. The qualitative results validate that the proposed system is effective in detecting various types of apple diseases and can be used as a practical tool by farmers and apple growers to aid them in diagnosis, quantification and follow-up of infections. Furthermore, in future, the work can be extended to other fruits and vegetables as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
深情安青应助TianY天翊采纳,获得10
2秒前
淡淡冬瓜完成签到,获得积分10
2秒前
4秒前
5秒前
gx完成签到,获得积分10
5秒前
风信子发布了新的文献求助10
5秒前
醉乀心发布了新的文献求助10
6秒前
7秒前
7秒前
阿牛奶发布了新的文献求助10
8秒前
王黎应助隐形映菱采纳,获得10
10秒前
10秒前
11秒前
暄暄完成签到 ,获得积分10
12秒前
黑去吗工发布了新的文献求助10
12秒前
诸怀曼发布了新的文献求助10
12秒前
失眠友灵完成签到,获得积分10
12秒前
汉堡包应助小伙子采纳,获得10
13秒前
俊逸沛菡发布了新的文献求助10
13秒前
向建完成签到,获得积分10
13秒前
Miya完成签到,获得积分10
16秒前
liuyun发布了新的文献求助10
16秒前
上官若男应助cz采纳,获得10
17秒前
斯文败类应助小董不懂采纳,获得10
17秒前
张弘发布了新的文献求助10
17秒前
18秒前
脈打完成签到,获得积分10
18秒前
彭于彦祖应助彭彭采纳,获得30
18秒前
诸怀曼完成签到,获得积分10
20秒前
Mandy完成签到,获得积分10
21秒前
Autism完成签到,获得积分10
22秒前
23秒前
24秒前
DTP发布了新的文献求助10
24秒前
迷路雪曼发布了新的文献求助10
25秒前
想吃榴莲发布了新的文献求助30
27秒前
CodeCraft应助舒心的雨双采纳,获得10
27秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871221
关于积分的说明 8174431
捐赠科研通 2538200
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645783
邀请新用户注册赠送积分活动 619580