Tree-level citrus yield prediction utilizing ground and aerial machine vision and machine learning

人工智能 树(集合论) RGB颜色模型 随机森林 计算机科学 平均绝对百分比误差 多光谱图像 偏最小二乘回归 树冠 数学 遥感 统计 机器学习 天蓬 人工神经网络 地理 考古 数学分析
作者
V. Vijayakumar,Yiannis Ampatzidis,Lucas Costa
出处
期刊:Smart agricultural technology [Elsevier]
卷期号:3: 100077-100077 被引量:15
标识
DOI:10.1016/j.atech.2022.100077
摘要

Yield prediction of citrus provides critical information before harvest to growers and allied industry to predict the resources required for workers, storage, and transportation of the harvest. In this study, three machine learning (ML) based models were developed for tree-level citrus yield prediction: (i) Model-1 utilized UAV imagery; (ii) Model-2 utilized UAV imagery and ground-based fruit detection and counts from images taken from one side of the tree; and (iii) Model-3 utilized UAV imagery and ground-based fruit detection and counts from images taken from two sides of the tree. The UAV images were used as input to a novel cloud-based technology, Agroview, to get the tree health, height, and canopy area information. The multispectral bands and the tree structural parameters were the input for Model-1. Two images per tree were captured from the ground using an RGB camera (one from each side) and were used for fruit count using an object detection algorithm, YOLOv3. Harvest data was collected manually per tree (fruit count and weight). Four ML algorithms - gradient boosting regression (GBR), random forest regression (RFR), linear regression (LR), and partial least squares regression (PLSR) were used to generate the models. Model-2 (MAPE of 23.45%) performed similarly to Model-3 (MAPE of 25.72%) and significantly better than Model-1 (MAPE of 35.59%). Model-2 was selected as the best model because of its low MAPE value in predicting yield at the tree level, and data collection simplicity (compared to Model-3).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
4秒前
icel完成签到,获得积分10
4秒前
5秒前
务实的听筠完成签到,获得积分20
6秒前
cocolu给cocolu的求助进行了留言
7秒前
丘比特应助平常的路人采纳,获得10
7秒前
8秒前
ZZ发布了新的文献求助10
8秒前
10秒前
木瓜发布了新的文献求助10
10秒前
满眼星辰发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
14秒前
万能图书馆应助木瓜采纳,获得10
16秒前
123发布了新的文献求助10
16秒前
16秒前
17秒前
21秒前
充电宝应助123采纳,获得10
23秒前
23秒前
23秒前
yiyi发布了新的文献求助30
25秒前
丰那个丰发布了新的文献求助10
26秒前
26秒前
27秒前
1111完成签到,获得积分10
28秒前
积极香菜完成签到,获得积分10
28秒前
28秒前
小宋同学应助ZZZ采纳,获得10
29秒前
小子一阿一完成签到,获得积分10
30秒前
shelly发布了新的文献求助10
31秒前
玖Nine发布了新的文献求助10
31秒前
sdjcni完成签到,获得积分10
33秒前
34秒前
123完成签到,获得积分10
34秒前
YuhaoYan完成签到,获得积分20
36秒前
cqy完成签到,获得积分10
38秒前
上官若男应助Jim采纳,获得10
39秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167