Learning to Explore Distillability and Sparsability: A Joint Framework for Model Compression

计算机科学 蒸馏 修剪 人工智能 计算 滤波器(信号处理) 机器学习 压缩(物理) 过程(计算) 算法 计算机视觉 化学 材料科学 有机化学 农学 复合材料 生物 操作系统
作者
Yufan Liu,Jiajiong Cao,Bing Li,Weiming Hu,Stephen J. Maybank
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:14
标识
DOI:10.1109/tpami.2022.3185317
摘要

Deep learning shows excellent performance usually at the expense of heavy computation. Recently, model compression has become a popular way of reducing the computation. Compression can be achieved using knowledge distillation or filter pruning. Knowledge distillation improves the accuracy of a lightweight network, while filter pruning removes redundant architecture in a cumbersome network. They are two different ways of achieving model compression, but few methods simultaneously consider both of them. In this paper, we revisit model compression and define two attributes of a model: distillability and sparsability, which reflect how much useful knowledge can be distilled and how many pruned ratios can be obtained, respectively. Guided by our observations and considering both accuracy and model size, a dynamically distillability-and-sparsability learning framework (DDSL) is introduced for model compression. DDSL consists of teacher, student and dean. Knowledge is distilled from the teacher to guide the student. The dean controls the training process by dynamically adjusting the distillation supervision and the sparsity supervision in a meta-learning framework. An alternating direction method of multiplier (ADMM)-based knowledge distillation-with-pruning (KDP) joint optimization algorithm is proposed to train the model. Extensive experimental results show that DDSL outperforms 24 state-of-the-art methods, including both knowledge distillation and filter pruning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双木发布了新的文献求助20
1秒前
1秒前
Dr大壮发布了新的文献求助30
1秒前
xiaoshi发布了新的文献求助10
2秒前
2秒前
打打应助方方采纳,获得10
2秒前
2秒前
凹凸先森完成签到 ,获得积分10
3秒前
DT完成签到,获得积分10
3秒前
淡淡铃铛完成签到,获得积分20
3秒前
wy.he应助乐观的丹琴采纳,获得10
3秒前
3秒前
轻松凝竹完成签到,获得积分10
4秒前
元锦程完成签到,获得积分10
5秒前
远远发布了新的文献求助30
5秒前
Leif应助wangqing采纳,获得20
5秒前
5秒前
6秒前
6秒前
专一的纸飞机完成签到,获得积分10
6秒前
拼搏诗翠发布了新的文献求助10
6秒前
keyangouderic发布了新的文献求助10
7秒前
覃仲荣完成签到,获得积分10
7秒前
和谐行恶发布了新的文献求助10
7秒前
元锦程发布了新的文献求助10
7秒前
轻松凝竹发布了新的文献求助10
8秒前
8秒前
QJN发布了新的文献求助10
8秒前
9秒前
西瓜应助zizi采纳,获得10
9秒前
心流发布了新的文献求助10
9秒前
LeungYM发布了新的文献求助10
11秒前
鹿若风完成签到,获得积分10
12秒前
12秒前
12秒前
fengzi完成签到,获得积分10
13秒前
好人完成签到,获得积分10
13秒前
13秒前
hata发布了新的文献求助10
14秒前
wu应助苹果花采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399