Hole conductivity through a defect band in ZnGa2O4

材料科学 极化子 带隙 价(化学) 类型(生物学) 凝聚态物理 兴奋剂 能量(信号处理) 结晶学 物理 电子 化学 量子力学 生态学 生物
作者
Fernando P. Sabino,Intuon Chatratin,Anderson Janotti,Gustavo M. Dalpian
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (6) 被引量:8
标识
DOI:10.1103/physrevmaterials.6.064602
摘要

Semiconductors with a wide band gap ($>3.0$ eV), high dielectric constant ($>10$), good thermal dissipation, and capable of $n$- and $p$-type doping are highly desirable for high-energy power electronic devices. Recent studies indicate that ${\mathrm{ZnGa}}_{2}{\mathrm{O}}_{4}$ may be suitable for these applications, standing out as an alternative to ${\mathrm{Ga}}_{2}{\mathrm{O}}_{3}$. The simple face-centered-cubic spinel structure of ${\mathrm{ZnGa}}_{2}{\mathrm{O}}_{4}$ results in isotropic electronic and optical properties, in contrast to the large anisotropic properties of the $\ensuremath{\beta}$-monoclinic ${\mathrm{Ga}}_{2}{\mathrm{O}}_{3}$. In addition, ${\mathrm{ZnGa}}_{2}{\mathrm{O}}_{4}$ has shown, on average, better thermal dissipation and potential for $n$- and $p$-type conductivity. Here we use density functional theory and hybrid functional calculations to investigate the electronic, optical, and point defect properties of ${\mathrm{ZnGa}}_{2}{\mathrm{O}}_{4}$, focusing on the possibility for $p$- and $n$-type conductivity. We find that the cation antisite ${\mathrm{Ga}}_{\mathrm{Zn}}$ is the lowest-energy donor defect that can lead to unintentional $n$-type conductivity. The stability of self-trapped holes (small hole polarons) and the high formation energy of acceptor defects make it difficult to achieve $p$-type conductivity. However, with an excess of Zn, forming ${\mathrm{Zn}}_{(1+2x)}{\mathrm{Ga}}_{2(1\ensuremath{-}x)}{\mathrm{O}}_{4}$ alloys, this compound can display an intermediate valence band, facilitating $p$-type conductivity. Due to the localized nature of this intermediate valence band, $p$-type conductivity by polaron hopping is expected, explaining the low mobility and low hole density observed in recent experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxx应助25486采纳,获得10
1秒前
Wtony完成签到 ,获得积分10
1秒前
温柔凝莲完成签到,获得积分10
2秒前
正版西瓜太妹完成签到,获得积分10
4秒前
王燕婷发布了新的文献求助10
6秒前
Luojiayi完成签到,获得积分20
7秒前
Ava应助xiaokezhang采纳,获得10
7秒前
8秒前
浮游应助江幻天采纳,获得10
9秒前
bkagyin应助猪猪hero采纳,获得10
10秒前
14秒前
chosmos发布了新的文献求助10
15秒前
充电宝应助wang97采纳,获得10
15秒前
不想干活应助雪儿采纳,获得10
16秒前
18秒前
Drew11完成签到,获得积分10
18秒前
纯真凌雪完成签到,获得积分20
19秒前
李爱国应助Luojiayi采纳,获得10
19秒前
hzmmm完成签到 ,获得积分10
21秒前
科研通AI2S应助渴望者采纳,获得10
22秒前
猪猪hero发布了新的文献求助10
22秒前
小马甲应助纯真凌雪采纳,获得10
23秒前
魔猿完成签到,获得积分10
24秒前
ding应助寒战采纳,获得10
24秒前
中和皇极应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
生动梦松应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
ding应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546005
求助须知:如何正确求助?哪些是违规求助? 3977488
关于积分的说明 12316333
捐赠科研通 3645800
什么是DOI,文献DOI怎么找? 2007782
邀请新用户注册赠送积分活动 1043355
科研通“疑难数据库(出版商)”最低求助积分说明 932121