石墨烯
黑体辐射
材料科学
石墨烯纳米带
极化子
辐射传输
声子
热辐射
双层石墨烯
凝聚态物理
光电子学
等离子体子
纳米技术
物理
光学
辐射
热力学
作者
Lu Lu,Bo Zhang,Han Ou,Bowen Li,Kun Zhou,Jinlin Song,Zixue Luo,Qiang Cheng
出处
期刊:Small
[Wiley]
日期:2022-03-11
卷期号:18 (19)
被引量:31
标识
DOI:10.1002/smll.202108032
摘要
Near-field radiative heat transfer (NFRHT) can exceed the blackbody radiation limit owing to the coupled evanescent waves, implying a significant potential for energy conversion and thermal management. Coupled surface plasmon polaritons (SPPs) and hyperbolic phonon polaritons (HPPs) with small ohmic losses enable a long propagation wavelength that is essential in NFRHT. However, so far, there still lacks knowledge about the experimental investigation of the coupling of SPPs and HPPs in terms of NFRHT. In this study, the NFRHT between graphene/hexagonal boron nitride (hBN) systems that can be readily transferred onto various substrates, with a gap space of ≈400 nm is measured. NFRHT enhancements in the order of three and six times higher than the blackbody limit for graphene/hBN heterostructures and graphene/hBN/graphene multilayers, respectively are demonstrated. In addition, the largest ever radiative heat flux using graphene/hBN/graphene multilayers under similar gap space of 400 nm is obtained. Consequently, analyzing the photon tunneling modes reveal that these phenomena are consequences of coupled SPPs of graphene and HPPs of hBN.
科研通智能强力驱动
Strongly Powered by AbleSci AI