Computational enzyme redesign: large jumps in function

导线 领域(数学) 计算机科学 任务(项目管理) 功能(生物学) 理论(学习稳定性) 数据科学 机器学习 人工智能 工业工程 系统工程 工程类 生物 数学 进化生物学 纯数学 地理 大地测量学
作者
Yinglu Cui,Jinyuan Sun,Bian Wu
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:4 (5): 409-419 被引量:40
标识
DOI:10.1016/j.trechm.2022.03.001
摘要

Computational enzyme redesign allows large sequence jumps along complex and rugged protein-fitness landscapes, thus navigating to new functions in fitness landscapes with reduced experimental effort. Data-driven approaches are now offering new tools for discovery in numerous fields. Although their full potential remains to be realized, recent examples suggested that they can help to traverse fitness landscapes more efficiently. New machine-learning (ML) methods, such as deep-learning methods, have greatly promoted the demand for collection of more uniform and unbiased data sets of higher quality. Rising demands for enzymes in biotechnological applications have fueled efforts to tailor their properties towards desired functions, such as activity, selectivity, and stability. Computational methods are increasingly used in this task, providing designs that efficiently navigate large regions of sequence space with a greatly reduced experimental burden. With the improvement of enzyme redesign algorithms, model-based methods have achieved significant success in recent decades. Meanwhile, the rapid growth in protein databases has also promoted the development of data-driven approaches. Although data-driven approaches are just emerging, it will be exciting to see whether they can advance the field of enzyme redesign with the accumulation of more standard data, just as they are with structure prediction. Here, we present a brief overview of the field of computational enzyme redesign. We anticipate a marriage between model-based and data-based approaches which may offer opportunities to achieve more ambitious enzyme engineering goals in the coming years. Rising demands for enzymes in biotechnological applications have fueled efforts to tailor their properties towards desired functions, such as activity, selectivity, and stability. Computational methods are increasingly used in this task, providing designs that efficiently navigate large regions of sequence space with a greatly reduced experimental burden. With the improvement of enzyme redesign algorithms, model-based methods have achieved significant success in recent decades. Meanwhile, the rapid growth in protein databases has also promoted the development of data-driven approaches. Although data-driven approaches are just emerging, it will be exciting to see whether they can advance the field of enzyme redesign with the accumulation of more standard data, just as they are with structure prediction. Here, we present a brief overview of the field of computational enzyme redesign. We anticipate a marriage between model-based and data-based approaches which may offer opportunities to achieve more ambitious enzyme engineering goals in the coming years. an ML method based on multilevel neural network models, which can represent increasingly abstract concepts or patterns, level by level. aims to create artificial enzymes with desired functions that were not previously provided by nature. in sequence space determines the selection process of protein evolution. A protein fitness landscape describes how a given set of mutations affect the function of a protein of interest. incorporates the theozyme into large amount of natural protein folds and optimizes the surrounding residues to design artificial enzymes with specific functions. use an atomistic force field to describe the dynamic motions of macromolecules over time. uses geometric criteria (distances, angles, and dihedrals) to determine conformations that are close to the transition state of the reaction. use wave functions to describe the state of atoms and their fundamental particles. They can be used to predict the transition states of the desired reaction. employs QM calculations to determine an ideal geometrical arrangement of the active site capable of performing catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kinly199完成签到,获得积分10
刚刚
共享精神应助zzahyc采纳,获得10
2秒前
2秒前
3秒前
重要的小猫咪完成签到,获得积分10
3秒前
深情安青应助llk采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
穿云小蓝鲸完成签到,获得积分10
6秒前
liuniuniu完成签到,获得积分10
6秒前
iNk应助蜗牛先生采纳,获得20
6秒前
7秒前
脑洞疼应助chyse采纳,获得10
7秒前
理理理理发布了新的文献求助10
8秒前
能干的吐司完成签到,获得积分10
9秒前
9秒前
步步发布了新的文献求助10
10秒前
11秒前
11秒前
ZWK发布了新的文献求助10
12秒前
一介书生发布了新的文献求助10
13秒前
14秒前
陈陈发布了新的文献求助30
14秒前
步步完成签到,获得积分10
16秒前
17秒前
zlj完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
wangbq完成签到 ,获得积分10
19秒前
123发布了新的文献求助10
20秒前
小小米发布了新的文献求助10
21秒前
QIMUSEN发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
323fgc完成签到,获得积分10
23秒前
充电宝应助平常的心采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014