Federated Learning with Sparsified Model Perturbation: Improving Accuracy under Client-Level Differential Privacy

差别隐私 计算机科学 联合学习 GSM演进的增强数据速率 人工智能 方案(数学) 边缘设备 信息隐私 机器学习 算法 计算机安全 数学 云计算 数学分析 操作系统
作者
Rui Hu,Yan Gong,Yuanxiong Guo
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2202.07178
摘要

Federated learning (FL) that enables edge devices to collaboratively learn a shared model while keeping their training data locally has received great attention recently and can protect privacy in comparison with the traditional centralized learning paradigm. However, sensitive information about the training data can still be inferred from model parameters shared in FL. Differential privacy (DP) is the state-of-the-art technique to defend against those attacks. The key challenge to achieving DP in FL lies in the adverse impact of DP noise on model accuracy, particularly for deep learning models with large numbers of parameters. This paper develops a novel differentially-private FL scheme named Fed-SMP that provides a client-level DP guarantee while maintaining high model accuracy. To mitigate the impact of privacy protection on model accuracy, Fed-SMP leverages a new technique called Sparsified Model Perturbation (SMP) where local models are sparsified first before being perturbed by Gaussian noise. We provide a tight end-to-end privacy analysis for Fed-SMP using Renyi DP and prove the convergence of Fed-SMP with both unbiased and biased sparsifications. Extensive experiments on real-world datasets are conducted to demonstrate the effectiveness of Fed-SMP in improving model accuracy with the same DP guarantee and saving communication cost simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
闫栋完成签到 ,获得积分10
3秒前
CosnEdge完成签到,获得积分10
4秒前
记得吃早饭完成签到 ,获得积分10
5秒前
南攻完成签到,获得积分10
5秒前
你真是那个啊完成签到,获得积分10
6秒前
弱水完成签到 ,获得积分10
12秒前
在水一方应助山君采纳,获得10
12秒前
睿123完成签到 ,获得积分10
13秒前
星辰大海应助迅速冷霜采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
生信人完成签到 ,获得积分10
17秒前
工科小白完成签到,获得积分10
18秒前
活泼的冬瓜完成签到,获得积分10
18秒前
21秒前
香山叶正红完成签到 ,获得积分10
21秒前
傲娇的凡之完成签到 ,获得积分10
22秒前
WizBLue完成签到,获得积分10
25秒前
dididi完成签到 ,获得积分10
25秒前
宜菏发布了新的文献求助10
26秒前
猜不猜不完成签到 ,获得积分10
26秒前
麦芽糖完成签到,获得积分10
27秒前
科研通AI2S应助babao采纳,获得10
27秒前
滴哩哩哒哒完成签到,获得积分10
29秒前
王kk完成签到 ,获得积分10
30秒前
非哲完成签到 ,获得积分10
30秒前
cai'e完成签到,获得积分10
31秒前
yurunxintian完成签到,获得积分10
31秒前
关远航完成签到,获得积分10
32秒前
logolush完成签到 ,获得积分10
33秒前
lxcy0612完成签到,获得积分10
34秒前
nianshu完成签到 ,获得积分0
37秒前
车剑锋完成签到,获得积分0
39秒前
雨竹完成签到,获得积分10
41秒前
汉堡包应助宜菏采纳,获得20
41秒前
蟑先生完成签到 ,获得积分10
43秒前
务实鞅完成签到 ,获得积分10
44秒前
babao完成签到,获得积分10
46秒前
48秒前
量子星尘发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685721
关于积分的说明 14838888
捐赠科研通 4673965
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067