计算机科学
分割
特征(语言学)
人工智能
编码(集合论)
代表(政治)
级联
源代码
模式识别(心理学)
数据挖掘
操作系统
程序设计语言
法学
政治学
政治
色谱法
集合(抽象数据类型)
化学
语言学
哲学
作者
Chuyu Zhang,Chuanyang Hu,Yongfei Liu,Xuming He
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2203.05145
摘要
We aim to tackle the problem of point-based interactive segmentation, in which the key challenge is to propagate the user-provided annotations to unlabeled regions efficiently. Existing methods tackle this challenge by utilizing computationally expensive fully connected graphs or transformer architectures that sacrifice important fine-grained information required for accurate segmentation. To overcome these limitations, we propose a cascade sparse feature propagation network that learns a click-augmented feature representation for propagating user-provided information to unlabeled regions. The sparse design of our network enables efficient information propagation on high-resolution features, resulting in more detailed object segmentation. We validate the effectiveness of our method through comprehensive experiments on various benchmarks, and the results demonstrate the superior performance of our approach. Code is available at \href{https://github.com/kleinzcy/CSFPN}{https://github.com/kleinzcy/CSFPN}.
科研通智能强力驱动
Strongly Powered by AbleSci AI