Mechanism design for data sharing: An electricity retail perspective

电力市场 盈利能力指数 利润(经济学) 收入 交易数据 产业组织 业务 数据库事务 电力零售 计算机科学 环境经济学
作者
Bohong Wang,Qinglai Guo,Yang Yu
出处
期刊:Applied Energy [Elsevier]
卷期号:314: 118871-118871
标识
DOI:10.1016/j.apenergy.2022.118871
摘要

• Data products can reduce uncertainty in decision-making problems with uncertainty. • Data revenues and costs are defined by uncertainty reduction and privacy exposure. • Electricity-side and data-side transactions are linked with data sharing framework. • The profit allocation mechanism ensures the profitability of electricity retailer. Information incompletion always forces market participants to make decisions under uncertainty in energy transactions, while obtaining related data is a feasible way for them to reduce uncertainty and gain profits. However, the application of data transactions is not yet mature. To extend the application range of data transactions and concretize the data transaction model, a novel framework of electricity-side and data-side transactions linked with data sharing is proposed from the electricity retail perspective in this paper. The necessity and processes of data sharing between the electricity retailer and data suppliers are elaborately illustrated in the framework. Data revenues and data costs are analyzed according to uncertainty reduction and information provision. Considering the widely used two-settlement system of electricity markets, data revenues and data costs can be expressed in closed forms and their differences are net profits that are regarded to drive the data flow. Furthermore, an ex-post profit allocation mechanism is matched to appropriately allocate the net profits between the electricity retailer and data suppliers in the data sharing model. By comparison with the Shapley value method, the mechanism is less time-consuming and will ensure the profitability of the electricity retailer. Finally, a practical case with real data is employed to realize the results proposed in the theoretical analysis, and the feasibility of the data sharing model and profit allocation mechanism is validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Hello应助xuanxuan采纳,获得10
2秒前
村长热爱美丽完成签到 ,获得积分10
2秒前
一衣完成签到,获得积分20
2秒前
2秒前
4秒前
明理世倌发布了新的文献求助10
4秒前
今后应助niu1采纳,获得10
5秒前
KONG发布了新的文献求助10
5秒前
爆米花应助成梦采纳,获得10
5秒前
yhl完成签到,获得积分20
6秒前
皮皮发布了新的文献求助10
7秒前
圆圆的脑袋应助SCISSH采纳,获得10
8秒前
阳光的雁山完成签到,获得积分10
8秒前
霖宸羽完成签到,获得积分10
9秒前
11秒前
无奈的代珊完成签到 ,获得积分10
11秒前
12秒前
12秒前
搜集达人应助糊涂的小伙采纳,获得10
12秒前
mmd完成签到 ,获得积分10
13秒前
13秒前
Lily完成签到,获得积分10
14秒前
温言发布了新的文献求助10
15秒前
15秒前
Roy完成签到,获得积分10
15秒前
永远少年完成签到,获得积分10
17秒前
niu1发布了新的文献求助10
17秒前
18秒前
Danny完成签到,获得积分10
18秒前
Lsx完成签到 ,获得积分10
18秒前
又胖了发布了新的文献求助10
19秒前
19秒前
小小飞发布了新的文献求助20
20秒前
20秒前
20秒前
21秒前
wanci应助NorthWang采纳,获得10
21秒前
zhen完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808