亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ProALIGN: Directly Learning Alignments for Protein Structure Prediction via Exploiting Context-Specific Alignment Motifs

线程(蛋白质序列) 计算机科学 多序列比对 模板 蛋白质结构预测 序列比对 结构线形 人工智能 卷积神经网络 模式识别(心理学) 人工神经网络 史密斯-沃特曼算法 蛋白质结构 序列(生物学) 背景(考古学) 肽序列 生物 遗传学 古生物学 生物化学 基因 程序设计语言
作者
Lupeng Kong,Fusong Ju,Wei-Mou Zheng,Jianwei Zhu,Shiwei Sun,Jinbo Xu,Dongbo Bu
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:29 (2): 92-105 被引量:1
标识
DOI:10.1089/cmb.2021.0430
摘要

Template-based modeling (TBM), including homology modeling and protein threading, is one of the most reliable techniques for protein structure prediction. It predicts protein structure by building an alignment between the query sequence under prediction and the templates with solved structures. However, it is still very challenging to build the optimal sequence-template alignment, especially when only distantly related templates are available. Here we report a novel deep learning approach ProALIGN that can predict much more accurate sequence-template alignment. Like protein sequences consisting of sequence motifs, protein alignments are also composed of frequently occurring alignment motifs with characteristic patterns. Alignment motifs are context-specific as their characteristic patterns are tightly related to sequence contexts of the aligned regions. Inspired by this observation, we represent a protein alignment as a binary matrix (in which 1 denotes an aligned residue pair) and then use a deep convolutional neural network to predict the optimal alignment from the query protein and its template. The trained neural network implicitly but effectively encodes an alignment scoring function, which reduces inaccuracies in the handcrafted scoring functions widely used by the current threading approaches. For a query protein and a template, we apply the neural network to directly infer likelihoods of all possible residue pairs in their entirety, which could effectively consider the correlations among multiple residues. We further construct the alignment with maximum likelihood, and finally build a structure model according to the alignment. Tested on three independent data sets with a total of 6688 protein alignment targets and 80 CASP13 TBM targets, our method achieved much better alignments and 3D structure models than the existing methods, including HHpred, CNFpred, CEthreader, and DeepThreader. These results clearly demonstrate the effectiveness of exploiting the context-specific alignment motifs by deep learning for protein threading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无限夜白完成签到,获得积分10
2秒前
15秒前
Xin发布了新的文献求助10
17秒前
执着淇完成签到,获得积分20
17秒前
啥也不会完成签到 ,获得积分10
23秒前
乐乐应助Sience采纳,获得10
26秒前
wyy完成签到 ,获得积分10
32秒前
34秒前
35秒前
羊羊羊完成签到 ,获得积分10
38秒前
Sience发布了新的文献求助10
38秒前
抹茶味完成签到,获得积分20
40秒前
wxby发布了新的文献求助30
42秒前
潇洒绿蕊完成签到,获得积分10
50秒前
悦耳诗筠完成签到,获得积分10
51秒前
ding应助悦耳诗筠采纳,获得10
55秒前
深情安青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
1分钟前
Sience发布了新的文献求助10
1分钟前
Hello应助帕热达采纳,获得10
1分钟前
自由凝蕊发布了新的文献求助10
1分钟前
1分钟前
George完成签到,获得积分10
1分钟前
1分钟前
白云发布了新的文献求助10
1分钟前
1分钟前
1分钟前
一只呆呆发布了新的文献求助20
1分钟前
帕热达发布了新的文献求助10
1分钟前
1分钟前
NexusExplorer应助Rashalin采纳,获得10
1分钟前
悦耳诗筠发布了新的文献求助10
1分钟前
1分钟前
gladys完成签到,获得积分10
1分钟前
持卿应助自由凝蕊采纳,获得10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590619
求助须知:如何正确求助?哪些是违规求助? 3159001
关于积分的说明 9521904
捐赠科研通 2861922
什么是DOI,文献DOI怎么找? 1572870
邀请新用户注册赠送积分活动 738262
科研通“疑难数据库(出版商)”最低求助积分说明 722733