MRI-based radiomics in distinguishing Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities: A preliminary retrospective study

医学 接收机工作特性 Lasso(编程语言) 回顾性队列研究 支持向量机 血管异常 磁共振成像 队列 放射科 无线电技术 核医学 人工智能 外科 病理 内科学 计算机科学 万维网
作者
Yingjing Ding,Zuopeng Wang,Ping Xu,Yangyang Ma,Wei Yao,Kai Li,Ying Gong
出处
期刊:Journal of Pediatric Surgery [Elsevier]
卷期号:57 (7): 1228-1234 被引量:3
标识
DOI:10.1016/j.jpedsurg.2022.02.031
摘要

To investigate the pretreatment differentiation between Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities of pediatric patients. To build and validate an MRI-based radiomic model.In this retrospective study, we obtained imaging data from 43 patients. We collected and compared clinical information, sketched region of interest (ROI), and extracted radiomic features from fat-suppressed T2-weighted (T2FS) images of the two cohorts of 30 and 13 patients respectively (training versus testing cohort 7:3). To select features, we used two sample t-test and the least absolute shrinkage and selection operator (LASSO) regression. The support vector machine (SVM) classification was constructed and evaluated by receiver operating characteristic (ROC) analysis.Thirty patients with KHE and 13 patients with FAVA in the extremities were included. Most lesions demonstrated low to intermediate signal intensity on T1-weighted images and hyperintense signals on T2-weighted ones. They also showed similar traits pathologically. Initially, 107 radiomic features were acquired and then three were finally selected. The support vector machine (SVM) model was able to differentiate the two anomalies from each other with an area under the curve (AUC) of 0.807 (95%CI 0.602-1.000) and 0.846 (95%CI 0.659-1.000) in training and testing cohort, respectively.The derived radiomic features were helpful in differentiating KHE from FAVA. A model which contained these features might further improve the performance and hopefully could serve as a potential tool for identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级幻梅发布了新的文献求助10
刚刚
Daisy完成签到,获得积分10
刚刚
hx发布了新的文献求助10
1秒前
卞家友发布了新的文献求助10
1秒前
魔幻白柏发布了新的文献求助10
1秒前
Goyounjung完成签到,获得积分10
2秒前
远坂时辰发布了新的文献求助10
2秒前
3秒前
烟花应助等待的龙猫采纳,获得80
5秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
mly发布了新的文献求助10
9秒前
9秒前
AAA完成签到,获得积分10
9秒前
10秒前
12秒前
Ava应助科研通管家采纳,获得10
12秒前
Zx_1993应助科研通管家采纳,获得10
12秒前
一叶知秋应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
小青椒应助科研通管家采纳,获得50
13秒前
一叶知秋应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
Jasper应助风趣夜山采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得30
13秒前
慕青应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
一叶知秋应助科研通管家采纳,获得10
13秒前
Zx_1993应助科研通管家采纳,获得10
13秒前
13秒前
nani260完成签到,获得积分10
14秒前
14秒前
搜集达人应助魔幻白柏采纳,获得10
15秒前
尊敬幻竹发布了新的文献求助10
15秒前
感动易巧完成签到 ,获得积分10
15秒前
biubiu完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480697
求助须知:如何正确求助?哪些是违规求助? 4581819
关于积分的说明 14382394
捐赠科研通 4510450
什么是DOI,文献DOI怎么找? 2471803
邀请新用户注册赠送积分活动 1458216
关于科研通互助平台的介绍 1431896