MRI-based radiomics in distinguishing Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities: A preliminary retrospective study

医学 接收机工作特性 Lasso(编程语言) 回顾性队列研究 支持向量机 血管异常 磁共振成像 队列 放射科 无线电技术 核医学 人工智能 外科 病理 内科学 计算机科学 万维网
作者
Yingjing Ding,Zuopeng Wang,Ping Xu,Yangyang Ma,Wei Yao,Kai Li,Ying Gong
出处
期刊:Journal of Pediatric Surgery [Elsevier]
卷期号:57 (7): 1228-1234 被引量:3
标识
DOI:10.1016/j.jpedsurg.2022.02.031
摘要

To investigate the pretreatment differentiation between Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities of pediatric patients. To build and validate an MRI-based radiomic model.In this retrospective study, we obtained imaging data from 43 patients. We collected and compared clinical information, sketched region of interest (ROI), and extracted radiomic features from fat-suppressed T2-weighted (T2FS) images of the two cohorts of 30 and 13 patients respectively (training versus testing cohort 7:3). To select features, we used two sample t-test and the least absolute shrinkage and selection operator (LASSO) regression. The support vector machine (SVM) classification was constructed and evaluated by receiver operating characteristic (ROC) analysis.Thirty patients with KHE and 13 patients with FAVA in the extremities were included. Most lesions demonstrated low to intermediate signal intensity on T1-weighted images and hyperintense signals on T2-weighted ones. They also showed similar traits pathologically. Initially, 107 radiomic features were acquired and then three were finally selected. The support vector machine (SVM) model was able to differentiate the two anomalies from each other with an area under the curve (AUC) of 0.807 (95%CI 0.602-1.000) and 0.846 (95%CI 0.659-1.000) in training and testing cohort, respectively.The derived radiomic features were helpful in differentiating KHE from FAVA. A model which contained these features might further improve the performance and hopefully could serve as a potential tool for identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助白日梦采纳,获得10
1秒前
我要发sci完成签到,获得积分20
2秒前
zsp完成签到 ,获得积分10
2秒前
桐桐应助aaa采纳,获得10
3秒前
热锅上的蚂蚁完成签到,获得积分10
3秒前
4秒前
hymettia发布了新的文献求助30
4秒前
4秒前
852应助优秀的白卉采纳,获得10
4秒前
科研通AI2S应助sajdhjas采纳,获得10
5秒前
Beal Julien完成签到,获得积分10
6秒前
竹子完成签到,获得积分10
6秒前
CodeCraft应助锦鲤大王采纳,获得10
6秒前
拼搏的高山应助文静勒采纳,获得100
7秒前
雨雨青青发布了新的文献求助10
7秒前
李健的小迷弟应助电饭宝采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
可恶啊完成签到,获得积分10
9秒前
Daisy发布了新的文献求助10
9秒前
9秒前
依古比古发布了新的文献求助10
10秒前
Can完成签到,获得积分10
11秒前
12秒前
CT完成签到,获得积分10
14秒前
14秒前
今后应助yangxue采纳,获得10
14秒前
swy发布了新的文献求助10
14秒前
袁珊发布了新的文献求助10
15秒前
唯有一个心完成签到,获得积分10
16秒前
16秒前
16秒前
可可爱钱完成签到,获得积分10
18秒前
19秒前
动听凌柏发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
入弦发布了新的文献求助10
19秒前
12彡完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507383
求助须知:如何正确求助?哪些是违规求助? 4603007
关于积分的说明 14483238
捐赠科研通 4536810
什么是DOI,文献DOI怎么找? 2486410
邀请新用户注册赠送积分活动 1469007
关于科研通互助平台的介绍 1441377