MRI-based radiomics in distinguishing Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities: A preliminary retrospective study

医学 接收机工作特性 Lasso(编程语言) 回顾性队列研究 支持向量机 血管异常 磁共振成像 队列 放射科 无线电技术 核医学 人工智能 外科 病理 内科学 计算机科学 万维网
作者
Yingjing Ding,Zuopeng Wang,Ping Xu,Yangyang Ma,Wei Yao,Kai Li,Ying Gong
出处
期刊:Journal of Pediatric Surgery [Elsevier BV]
卷期号:57 (7): 1228-1234 被引量:3
标识
DOI:10.1016/j.jpedsurg.2022.02.031
摘要

To investigate the pretreatment differentiation between Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities of pediatric patients. To build and validate an MRI-based radiomic model.In this retrospective study, we obtained imaging data from 43 patients. We collected and compared clinical information, sketched region of interest (ROI), and extracted radiomic features from fat-suppressed T2-weighted (T2FS) images of the two cohorts of 30 and 13 patients respectively (training versus testing cohort 7:3). To select features, we used two sample t-test and the least absolute shrinkage and selection operator (LASSO) regression. The support vector machine (SVM) classification was constructed and evaluated by receiver operating characteristic (ROC) analysis.Thirty patients with KHE and 13 patients with FAVA in the extremities were included. Most lesions demonstrated low to intermediate signal intensity on T1-weighted images and hyperintense signals on T2-weighted ones. They also showed similar traits pathologically. Initially, 107 radiomic features were acquired and then three were finally selected. The support vector machine (SVM) model was able to differentiate the two anomalies from each other with an area under the curve (AUC) of 0.807 (95%CI 0.602-1.000) and 0.846 (95%CI 0.659-1.000) in training and testing cohort, respectively.The derived radiomic features were helpful in differentiating KHE from FAVA. A model which contained these features might further improve the performance and hopefully could serve as a potential tool for identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Longkun_Li完成签到,获得积分10
1秒前
自信山河完成签到 ,获得积分10
1秒前
阳光煎蛋发布了新的文献求助10
2秒前
2秒前
科目三应助001采纳,获得10
3秒前
曦玥完成签到 ,获得积分10
4秒前
T_KYG发布了新的文献求助10
5秒前
5秒前
星辰大海应助饱满的亦旋采纳,获得10
5秒前
桃子汽水完成签到,获得积分20
5秒前
6秒前
zhaowendao发布了新的文献求助10
6秒前
小树发布了新的文献求助10
6秒前
asdfrfg完成签到,获得积分10
6秒前
7秒前
自信山河关注了科研通微信公众号
7秒前
7秒前
浮游应助tianqi采纳,获得10
8秒前
10秒前
科研通AI6应助风止采纳,获得10
10秒前
nt完成签到,获得积分10
10秒前
初空月儿发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
12秒前
Pilule完成签到 ,获得积分10
12秒前
hxx完成签到,获得积分10
12秒前
12秒前
13秒前
124cndhaP发布了新的文献求助10
14秒前
14秒前
安夏完成签到,获得积分10
15秒前
SciGPT应助星野采纳,获得10
15秒前
虚拟的柠檬完成签到,获得积分10
15秒前
那时花开应助Queen采纳,获得10
16秒前
001发布了新的文献求助10
16秒前
16秒前
duzhi发布了新的文献求助10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142763
求助须知:如何正确求助?哪些是违规求助? 4340938
关于积分的说明 13518927
捐赠科研通 4181060
什么是DOI,文献DOI怎么找? 2292711
邀请新用户注册赠送积分活动 1293327
关于科研通互助平台的介绍 1235912