MRI-based radiomics in distinguishing Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities: A preliminary retrospective study

医学 接收机工作特性 Lasso(编程语言) 回顾性队列研究 支持向量机 血管异常 磁共振成像 队列 放射科 无线电技术 核医学 人工智能 外科 病理 内科学 计算机科学 万维网
作者
Yingjing Ding,Zuopeng Wang,Ping Xu,Yangyang Ma,Wei Yao,Kai Li,Ying Gong
出处
期刊:Journal of Pediatric Surgery [Elsevier BV]
卷期号:57 (7): 1228-1234 被引量:3
标识
DOI:10.1016/j.jpedsurg.2022.02.031
摘要

To investigate the pretreatment differentiation between Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities of pediatric patients. To build and validate an MRI-based radiomic model.In this retrospective study, we obtained imaging data from 43 patients. We collected and compared clinical information, sketched region of interest (ROI), and extracted radiomic features from fat-suppressed T2-weighted (T2FS) images of the two cohorts of 30 and 13 patients respectively (training versus testing cohort 7:3). To select features, we used two sample t-test and the least absolute shrinkage and selection operator (LASSO) regression. The support vector machine (SVM) classification was constructed and evaluated by receiver operating characteristic (ROC) analysis.Thirty patients with KHE and 13 patients with FAVA in the extremities were included. Most lesions demonstrated low to intermediate signal intensity on T1-weighted images and hyperintense signals on T2-weighted ones. They also showed similar traits pathologically. Initially, 107 radiomic features were acquired and then three were finally selected. The support vector machine (SVM) model was able to differentiate the two anomalies from each other with an area under the curve (AUC) of 0.807 (95%CI 0.602-1.000) and 0.846 (95%CI 0.659-1.000) in training and testing cohort, respectively.The derived radiomic features were helpful in differentiating KHE from FAVA. A model which contained these features might further improve the performance and hopefully could serve as a potential tool for identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的芷烟完成签到,获得积分10
1秒前
伯爵完成签到 ,获得积分10
2秒前
请假了完成签到,获得积分10
3秒前
柔之完成签到,获得积分10
4秒前
orixero应助李新颖采纳,获得30
4秒前
研友_VZG7GZ应助YEM采纳,获得10
6秒前
7秒前
7秒前
小鹿斑比完成签到,获得积分10
7秒前
9秒前
勤劳问旋完成签到,获得积分10
9秒前
天气不似预期完成签到,获得积分10
11秒前
沉默白猫发布了新的文献求助10
12秒前
lz发布了新的文献求助10
12秒前
柯一一应助linmo采纳,获得10
12秒前
彪壮的幻丝完成签到 ,获得积分10
12秒前
zhang发布了新的文献求助10
14秒前
传奇3应助aimam采纳,获得20
15秒前
林屿溪完成签到,获得积分10
16秒前
小二郎应助茴茴采纳,获得10
17秒前
adi完成签到,获得积分10
17秒前
小菜鸡完成签到,获得积分20
22秒前
23秒前
wanci应助frank采纳,获得10
23秒前
爆米花应助於茗采纳,获得10
23秒前
爆米花应助LLL采纳,获得10
24秒前
25秒前
aaaa发布了新的文献求助10
25秒前
28秒前
重要鑫磊发布了新的文献求助10
28秒前
28秒前
123发布了新的文献求助10
32秒前
lii应助deng采纳,获得20
32秒前
33秒前
啊咧咧完成签到 ,获得积分10
34秒前
派大星完成签到,获得积分10
34秒前
许许发布了新的文献求助10
35秒前
ding应助LLL采纳,获得10
36秒前
37秒前
文城完成签到 ,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432