MRI-based radiomics in distinguishing Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities: A preliminary retrospective study

医学 接收机工作特性 Lasso(编程语言) 回顾性队列研究 支持向量机 血管异常 磁共振成像 队列 放射科 无线电技术 核医学 人工智能 外科 病理 内科学 计算机科学 万维网
作者
Yingjing Ding,Zuopeng Wang,Ping Xu,Yangyang Ma,Wei Yao,Kai Li,Yandong Gong
出处
期刊:Journal of Pediatric Surgery [Elsevier]
卷期号:57 (7): 1228-1234 被引量:1
标识
DOI:10.1016/j.jpedsurg.2022.02.031
摘要

To investigate the pretreatment differentiation between Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities of pediatric patients. To build and validate an MRI-based radiomic model.In this retrospective study, we obtained imaging data from 43 patients. We collected and compared clinical information, sketched region of interest (ROI), and extracted radiomic features from fat-suppressed T2-weighted (T2FS) images of the two cohorts of 30 and 13 patients respectively (training versus testing cohort 7:3). To select features, we used two sample t-test and the least absolute shrinkage and selection operator (LASSO) regression. The support vector machine (SVM) classification was constructed and evaluated by receiver operating characteristic (ROC) analysis.Thirty patients with KHE and 13 patients with FAVA in the extremities were included. Most lesions demonstrated low to intermediate signal intensity on T1-weighted images and hyperintense signals on T2-weighted ones. They also showed similar traits pathologically. Initially, 107 radiomic features were acquired and then three were finally selected. The support vector machine (SVM) model was able to differentiate the two anomalies from each other with an area under the curve (AUC) of 0.807 (95%CI 0.602-1.000) and 0.846 (95%CI 0.659-1.000) in training and testing cohort, respectively.The derived radiomic features were helpful in differentiating KHE from FAVA. A model which contained these features might further improve the performance and hopefully could serve as a potential tool for identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐小佳发布了新的文献求助30
刚刚
刚刚
咕噜噜完成签到 ,获得积分10
刚刚
慈祥的花瓣完成签到,获得积分10
1秒前
偷猪剑客发布了新的文献求助10
1秒前
夏末发布了新的文献求助10
1秒前
futing发布了新的文献求助10
1秒前
bzy完成签到,获得积分10
1秒前
Yxy完成签到,获得积分10
2秒前
不喝可乐完成签到,获得积分20
3秒前
小问号完成签到,获得积分10
3秒前
4秒前
柳七发布了新的文献求助10
4秒前
迟大猫应助111123123123采纳,获得10
4秒前
香蕉觅云应助子俞采纳,获得10
4秒前
玛卡巴卡完成签到,获得积分10
5秒前
Grayball应助科研小白采纳,获得10
5秒前
阳光完成签到,获得积分10
5秒前
duan完成签到,获得积分10
5秒前
7777777发布了新的文献求助10
5秒前
朴素篮球完成签到,获得积分10
6秒前
清辉月凝完成签到,获得积分10
7秒前
Barry完成签到,获得积分10
7秒前
枫叶完成签到 ,获得积分10
7秒前
英姑应助桶桶要好好学习采纳,获得10
7秒前
8秒前
不辞完成签到,获得积分10
8秒前
ry发布了新的文献求助10
8秒前
song完成签到,获得积分10
8秒前
明亮无颜完成签到,获得积分10
8秒前
9秒前
9秒前
小慈爱鸡完成签到 ,获得积分10
9秒前
9秒前
英俊的铭应助麻麻采纳,获得10
9秒前
97b1完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678