MRI-based radiomics in distinguishing Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities: A preliminary retrospective study

医学 接收机工作特性 Lasso(编程语言) 回顾性队列研究 支持向量机 血管异常 磁共振成像 队列 放射科 无线电技术 核医学 人工智能 外科 病理 内科学 计算机科学 万维网
作者
Yingjing Ding,Zuopeng Wang,Ping Xu,Yangyang Ma,Wei Yao,Kai Li,Ying Gong
出处
期刊:Journal of Pediatric Surgery [Elsevier]
卷期号:57 (7): 1228-1234 被引量:3
标识
DOI:10.1016/j.jpedsurg.2022.02.031
摘要

To investigate the pretreatment differentiation between Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities of pediatric patients. To build and validate an MRI-based radiomic model.In this retrospective study, we obtained imaging data from 43 patients. We collected and compared clinical information, sketched region of interest (ROI), and extracted radiomic features from fat-suppressed T2-weighted (T2FS) images of the two cohorts of 30 and 13 patients respectively (training versus testing cohort 7:3). To select features, we used two sample t-test and the least absolute shrinkage and selection operator (LASSO) regression. The support vector machine (SVM) classification was constructed and evaluated by receiver operating characteristic (ROC) analysis.Thirty patients with KHE and 13 patients with FAVA in the extremities were included. Most lesions demonstrated low to intermediate signal intensity on T1-weighted images and hyperintense signals on T2-weighted ones. They also showed similar traits pathologically. Initially, 107 radiomic features were acquired and then three were finally selected. The support vector machine (SVM) model was able to differentiate the two anomalies from each other with an area under the curve (AUC) of 0.807 (95%CI 0.602-1.000) and 0.846 (95%CI 0.659-1.000) in training and testing cohort, respectively.The derived radiomic features were helpful in differentiating KHE from FAVA. A model which contained these features might further improve the performance and hopefully could serve as a potential tool for identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
紫熊完成签到,获得积分10
2秒前
4秒前
隐形曼青应助杜琦采纳,获得10
6秒前
Brenna完成签到 ,获得积分10
6秒前
共享精神应助大白采纳,获得10
7秒前
拉长的初蓝完成签到,获得积分10
7秒前
8秒前
传奇3应助踏实初雪采纳,获得10
9秒前
金阿林在科研应助666采纳,获得10
9秒前
汉堡包应助666采纳,获得10
9秒前
852应助加菲丰丰采纳,获得10
11秒前
早睡早起身体棒完成签到,获得积分10
12秒前
Stove发布了新的文献求助10
13秒前
14秒前
赤壁完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
浮游应助tansl1989采纳,获得10
17秒前
阿杰完成签到,获得积分10
18秒前
打打应助研友_pnxBe8采纳,获得10
18秒前
18秒前
英俊的铭应助shuiyi采纳,获得10
18秒前
18秒前
18秒前
hdbys完成签到,获得积分10
19秒前
逐上春来完成签到 ,获得积分10
20秒前
搜集达人应助ll采纳,获得10
20秒前
marketing发布了新的文献求助30
20秒前
姜姜姜姜完成签到,获得积分10
21秒前
21秒前
21秒前
杜琦发布了新的文献求助10
22秒前
23秒前
余凤悦完成签到 ,获得积分20
24秒前
whuhustwit发布了新的文献求助10
24秒前
man发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425524
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168635
捐赠科研通 4457118
什么是DOI,文献DOI怎么找? 2444431
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800