MRI-based radiomics in distinguishing Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities: A preliminary retrospective study

医学 接收机工作特性 Lasso(编程语言) 回顾性队列研究 支持向量机 血管异常 磁共振成像 队列 放射科 无线电技术 核医学 人工智能 外科 病理 内科学 计算机科学 万维网
作者
Yingjing Ding,Zuopeng Wang,Ping Xu,Yangyang Ma,Wei Yao,Kai Li,Ying Gong
出处
期刊:Journal of Pediatric Surgery [Elsevier BV]
卷期号:57 (7): 1228-1234 被引量:3
标识
DOI:10.1016/j.jpedsurg.2022.02.031
摘要

To investigate the pretreatment differentiation between Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities of pediatric patients. To build and validate an MRI-based radiomic model.In this retrospective study, we obtained imaging data from 43 patients. We collected and compared clinical information, sketched region of interest (ROI), and extracted radiomic features from fat-suppressed T2-weighted (T2FS) images of the two cohorts of 30 and 13 patients respectively (training versus testing cohort 7:3). To select features, we used two sample t-test and the least absolute shrinkage and selection operator (LASSO) regression. The support vector machine (SVM) classification was constructed and evaluated by receiver operating characteristic (ROC) analysis.Thirty patients with KHE and 13 patients with FAVA in the extremities were included. Most lesions demonstrated low to intermediate signal intensity on T1-weighted images and hyperintense signals on T2-weighted ones. They also showed similar traits pathologically. Initially, 107 radiomic features were acquired and then three were finally selected. The support vector machine (SVM) model was able to differentiate the two anomalies from each other with an area under the curve (AUC) of 0.807 (95%CI 0.602-1.000) and 0.846 (95%CI 0.659-1.000) in training and testing cohort, respectively.The derived radiomic features were helpful in differentiating KHE from FAVA. A model which contained these features might further improve the performance and hopefully could serve as a potential tool for identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡拉米完成签到,获得积分10
刚刚
my发布了新的文献求助10
2秒前
mumu发布了新的文献求助10
2秒前
安安完成签到,获得积分20
4秒前
千尺焰完成签到,获得积分10
4秒前
wlscj举报midu1求助涉嫌违规
4秒前
4秒前
风中的香寒完成签到,获得积分10
5秒前
yuan完成签到 ,获得积分10
8秒前
8秒前
lql完成签到,获得积分10
9秒前
CipherSage应助小白采纳,获得10
9秒前
呜呼发布了新的文献求助10
10秒前
lessismore完成签到,获得积分10
10秒前
11秒前
贪玩的豪英完成签到,获得积分10
11秒前
12秒前
TZ完成签到,获得积分10
13秒前
无奈的天玉完成签到,获得积分10
13秒前
lessismore发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
小马甲应助yannick采纳,获得10
15秒前
liulongchao完成签到,获得积分10
16秒前
新星完成签到,获得积分10
17秒前
lhz发布了新的文献求助10
17秒前
欢呼凡雁发布了新的文献求助10
18秒前
柠栀发布了新的文献求助10
18秒前
小马甲应助曹梓轩采纳,获得10
18秒前
liulongchao发布了新的文献求助20
21秒前
冰墩墩完成签到,获得积分10
21秒前
沐风发布了新的文献求助12
22秒前
23秒前
碧蓝的母鸡完成签到,获得积分10
24秒前
学习完成签到,获得积分10
24秒前
26秒前
27秒前
27秒前
一站到底完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875