MRI-based radiomics in distinguishing Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities: A preliminary retrospective study

医学 接收机工作特性 Lasso(编程语言) 回顾性队列研究 支持向量机 血管异常 磁共振成像 队列 放射科 无线电技术 核医学 人工智能 外科 病理 内科学 计算机科学 万维网
作者
Yingjing Ding,Zuopeng Wang,Ping Xu,Yangyang Ma,Wei Yao,Kai Li,Ying Gong
出处
期刊:Journal of Pediatric Surgery [Elsevier]
卷期号:57 (7): 1228-1234 被引量:3
标识
DOI:10.1016/j.jpedsurg.2022.02.031
摘要

To investigate the pretreatment differentiation between Kaposiform hemangioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities of pediatric patients. To build and validate an MRI-based radiomic model.In this retrospective study, we obtained imaging data from 43 patients. We collected and compared clinical information, sketched region of interest (ROI), and extracted radiomic features from fat-suppressed T2-weighted (T2FS) images of the two cohorts of 30 and 13 patients respectively (training versus testing cohort 7:3). To select features, we used two sample t-test and the least absolute shrinkage and selection operator (LASSO) regression. The support vector machine (SVM) classification was constructed and evaluated by receiver operating characteristic (ROC) analysis.Thirty patients with KHE and 13 patients with FAVA in the extremities were included. Most lesions demonstrated low to intermediate signal intensity on T1-weighted images and hyperintense signals on T2-weighted ones. They also showed similar traits pathologically. Initially, 107 radiomic features were acquired and then three were finally selected. The support vector machine (SVM) model was able to differentiate the two anomalies from each other with an area under the curve (AUC) of 0.807 (95%CI 0.602-1.000) and 0.846 (95%CI 0.659-1.000) in training and testing cohort, respectively.The derived radiomic features were helpful in differentiating KHE from FAVA. A model which contained these features might further improve the performance and hopefully could serve as a potential tool for identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
csr完成签到,获得积分20
2秒前
我是老大应助KALIdemo158采纳,获得20
3秒前
一目完成签到,获得积分10
3秒前
Zx_1993应助闪闪乞采纳,获得10
4秒前
腼腆的薯片完成签到 ,获得积分10
4秒前
米糊完成签到,获得积分10
5秒前
5秒前
聆风完成签到 ,获得积分10
5秒前
嘻嘻哈哈完成签到 ,获得积分10
6秒前
6秒前
6秒前
Daria完成签到 ,获得积分10
8秒前
8秒前
任1完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
迅速采梦发布了新的文献求助10
10秒前
叶燕完成签到 ,获得积分10
11秒前
qing_li完成签到,获得积分10
12秒前
12秒前
13秒前
情怀应助KALIdemo158采纳,获得20
13秒前
djshao应助Yuan采纳,获得10
13秒前
孟超发布了新的文献求助10
13秒前
可爱的梦菲完成签到,获得积分10
14秒前
14秒前
天天快乐应助宇称yu采纳,获得10
15秒前
火星上小土豆完成签到 ,获得积分10
15秒前
阿苏完成签到 ,获得积分10
17秒前
旺旺小小贝完成签到,获得积分10
18秒前
Mlwwq发布了新的文献求助10
18秒前
18秒前
Jasper应助Ningxin采纳,获得50
19秒前
忧伤的绍辉完成签到 ,获得积分10
22秒前
孟超完成签到,获得积分20
23秒前
无极微光应助wangqing采纳,获得20
24秒前
李爱国应助杨儿采纳,获得30
25秒前
Jahen完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600606
求助须知:如何正确求助?哪些是违规求助? 4686243
关于积分的说明 14842399
捐赠科研通 4677148
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471201