亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image identification for two-phase flow patterns based on CNN algorithms

段塞流 卷积神经网络 计算机科学 算法 流量(数学) 普遍性(动力系统) 两相流 模式识别(心理学) 人工智能 数学 物理 几何学 量子力学
作者
Feng Nie,Haocheng Wang,Qinglu Song,Yanxing Zhao,Jun Shen,Maoqiong Gong
出处
期刊:International Journal of Multiphase Flow [Elsevier BV]
卷期号:152: 104067-104067 被引量:54
标识
DOI:10.1016/j.ijmultiphaseflow.2022.104067
摘要

Flow patterns are essential and useful to model the interfacial structures and heat transfer in gas-liquid two-phase flow. However, the current two-phase flow patterns classification methods mostly depend on direct visual observation. This study adopted a new flow pattern classification method based on convolutional neural network (CNN) algorithms to achieve an automatic and objective identification of two-phase flow patterns. A database of 696 test conditions, including 105642 condensing flow pattern images of methane and tetrafluoromethane in a horizontal circular tube, is collected as the input of the data-driven algorithms. After 80% of image data is fed to train and fit the parameters in the algorithms, the trained models with acceptable universality are obtained to identify five flow patterns: annular flow, bubbly flow, churn flow, slug flow and stratified flow. Compared with the manual classification, the proposed method can accurately predict two-phase flow patterns with a prediction accuracy of more than 90.63% and 91.45% for the test dataset and the entire database, respectively. The average accuracy for predicting all data points in the database is more than 97.56%. The results showed that using images as input, CNN algorithms can provide objective prediction with satisfactory accuracy and universality for two-phase flow pattern identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
ye发布了新的文献求助10
14秒前
faye完成签到 ,获得积分20
16秒前
18秒前
26秒前
28秒前
31秒前
37秒前
47秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助150
1分钟前
1分钟前
1分钟前
ye完成签到 ,获得积分10
1分钟前
Akim应助dew采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
虚幻沛菡发布了新的文献求助10
2分钟前
jie完成签到 ,获得积分10
2分钟前
cc完成签到,获得积分10
2分钟前
iDong完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
dew发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
xiuxiu发布了新的文献求助10
3分钟前
玩命的夏彤给玩命的夏彤的求助进行了留言
3分钟前
科研通AI5应助英勇兔子采纳,获得10
3分钟前
淡然的妙芙应助lezbj99采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5091497
求助须知:如何正确求助?哪些是违规求助? 4305806
关于积分的说明 13416100
捐赠科研通 4131518
什么是DOI,文献DOI怎么找? 2263164
邀请新用户注册赠送积分活动 1266984
关于科研通互助平台的介绍 1202128