A Combination of Radiomic Features, Imaging Characteristics, and Serum Tumor Biomarkers to Predict the Possibility of the High-Grade Subtypes of Lung Adenocarcinoma

列线图 医学 接收机工作特性 单变量 逻辑回归 无线电技术 腺癌 放射科 肺癌 单变量分析 多元统计 多元分析 肿瘤科 内科学 癌症 计算机科学 机器学习
作者
Yuanqing Liu,Yue Chang,Xinyi Zha,Jiayi Bao,Qian Wu,Hui Dai,Chunhong Hu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (12): 1792-1801 被引量:9
标识
DOI:10.1016/j.acra.2022.02.024
摘要

Lung adenocarcinomas (LADC) containing high-grade subtypes have a poorer prognosis. And some studies have shown that high-grade subtypes have been identified as an independent predictor of local recurrence in patients treated with limited resection. The aim of this study was to construct a combined model based on radiomic features, imaging characteristics and serum tumor biomarkers to predict the possibility of preoperative high-grade subtypes.156 patients with LADC were retrospectively recruited in this study. These patients were randomly divided into training and validation cohorts. Radiomics features and imaging characteristics were extracted from plain CT images. A nomogram was developed in a training cohort by univariate and multivariate logistic analysis, and its performance was evaluated by receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) in the training and validation cohorts.A total of 1316 radiomic features were extracted from the lesions in plain chest CT images. After applying the mRMR algorithm and the LASSO regression, 4 features were retained. Based on these radiomic features, Radiomic score (Radscore) was calculated for each patient. Spiculation, air bronchogram sign, CYFRA 21-1 and Radscore had been used in the construction of the combined model. The AUC of the combined model was respectively 0.88 (95% CI, 0.82-0.95) and 0.94 (95% CI, 0.86-1.00) in the training and validation cohorts.The combined model based on CT images and serum tumor biomarkers, can predict the high-grade subtypes of LADC in a non-invasive manner, which may influence individual treatment planning, such as the choice of surgical approach and postoperative adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYLLTX完成签到,获得积分10
刚刚
畅快山兰完成签到 ,获得积分10
刚刚
gaoxiaogao完成签到,获得积分10
刚刚
舒适怀寒完成签到 ,获得积分10
刚刚
shenglll完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
普鲁卡因发布了新的文献求助10
10秒前
Liang完成签到,获得积分10
11秒前
爱思考的小笨笨完成签到,获得积分10
12秒前
123456完成签到 ,获得积分10
12秒前
小飞完成签到 ,获得积分10
13秒前
俞斐完成签到,获得积分10
14秒前
我超爱cs完成签到,获得积分10
14秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
21秒前
彭a完成签到,获得积分10
21秒前
Migrol完成签到,获得积分10
22秒前
高兴的小完成签到,获得积分10
22秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
24秒前
慕青应助普鲁卡因采纳,获得10
24秒前
御剑乘风来完成签到,获得积分10
24秒前
李牛牛完成签到,获得积分10
28秒前
等待的代容完成签到,获得积分10
30秒前
传奇3应助小南孩采纳,获得10
30秒前
尊敬飞丹完成签到,获得积分10
31秒前
33秒前
离岸完成签到,获得积分10
33秒前
tian完成签到,获得积分10
35秒前
普鲁卡因发布了新的文献求助10
37秒前
daijk完成签到,获得积分10
38秒前
40秒前
风趣的烨磊完成签到,获得积分10
43秒前
仝富贵完成签到,获得积分10
44秒前
小南孩发布了新的文献求助10
45秒前
奔铂儿钯完成签到,获得积分10
46秒前
跳跃山柳完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
50秒前
小南孩完成签到,获得积分10
53秒前
脑洞疼应助普鲁卡因采纳,获得10
59秒前
zhaoyaoshi完成签到 ,获得积分10
59秒前
chiazy完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022