A Combination of Radiomic Features, Imaging Characteristics, and Serum Tumor Biomarkers to Predict the Possibility of the High-Grade Subtypes of Lung Adenocarcinoma

列线图 医学 接收机工作特性 单变量 逻辑回归 无线电技术 腺癌 放射科 肺癌 单变量分析 多元统计 多元分析 肿瘤科 内科学 癌症 计算机科学 机器学习
作者
Yuanqing Liu,Yue Chang,Xinyi Zha,Jiayi Bao,Qian Wu,Hui Dai,Chunhong Hu
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (12): 1792-1801 被引量:9
标识
DOI:10.1016/j.acra.2022.02.024
摘要

Lung adenocarcinomas (LADC) containing high-grade subtypes have a poorer prognosis. And some studies have shown that high-grade subtypes have been identified as an independent predictor of local recurrence in patients treated with limited resection. The aim of this study was to construct a combined model based on radiomic features, imaging characteristics and serum tumor biomarkers to predict the possibility of preoperative high-grade subtypes.156 patients with LADC were retrospectively recruited in this study. These patients were randomly divided into training and validation cohorts. Radiomics features and imaging characteristics were extracted from plain CT images. A nomogram was developed in a training cohort by univariate and multivariate logistic analysis, and its performance was evaluated by receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) in the training and validation cohorts.A total of 1316 radiomic features were extracted from the lesions in plain chest CT images. After applying the mRMR algorithm and the LASSO regression, 4 features were retained. Based on these radiomic features, Radiomic score (Radscore) was calculated for each patient. Spiculation, air bronchogram sign, CYFRA 21-1 and Radscore had been used in the construction of the combined model. The AUC of the combined model was respectively 0.88 (95% CI, 0.82-0.95) and 0.94 (95% CI, 0.86-1.00) in the training and validation cohorts.The combined model based on CT images and serum tumor biomarkers, can predict the high-grade subtypes of LADC in a non-invasive manner, which may influence individual treatment planning, such as the choice of surgical approach and postoperative adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽的夏瑶完成签到,获得积分10
1秒前
bo发布了新的文献求助10
3秒前
5秒前
5秒前
看风景的小熊完成签到,获得积分10
5秒前
7秒前
学时习完成签到,获得积分10
7秒前
赘婿应助黄沙采纳,获得10
8秒前
8秒前
8秒前
12秒前
天天快乐应助罗moumou采纳,获得10
12秒前
13秒前
21发布了新的文献求助10
13秒前
独特手链发布了新的文献求助10
13秒前
zhangqy完成签到,获得积分10
14秒前
赘婿应助霸气的鹰采纳,获得10
14秒前
14秒前
昨夜风宸发布了新的文献求助10
14秒前
科研通AI2S应助阿晴采纳,获得10
15秒前
LL完成签到 ,获得积分10
16秒前
16秒前
芳芳子呀完成签到,获得积分10
17秒前
超神完成签到,获得积分10
17秒前
千千千千千千青完成签到 ,获得积分10
18秒前
贤惠的白开水完成签到 ,获得积分10
19秒前
热心乌完成签到,获得积分0
20秒前
顾矜应助优美飞薇采纳,获得10
20秒前
21秒前
22秒前
优雅小橘子完成签到 ,获得积分10
23秒前
24秒前
黄花菜应助银月葱头采纳,获得10
25秒前
早春不过一棵树完成签到 ,获得积分10
25秒前
26秒前
钮祜禄宋发布了新的文献求助30
29秒前
29秒前
小强123发布了新的文献求助10
31秒前
飘逸灰狼完成签到 ,获得积分10
31秒前
昨夜风宸完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115