Robot-assisted neuroendoscopy for real-time 3D guidance of transventricular approach to deep-brain targets

点云 计算机视觉 人工智能 计算机科学 特征(语言学) 成像体模 同时定位和映射 树遍历 帧速率 迭代重建 机器人 移动机器人 算法 放射科 医学 哲学 语言学
作者
Prasad Vagdargi,Ali Uneri,Craig Jones,Pengwei Wu,Runze Han,Mark G. Luciano,William S. Anderson,Patrick A. Helm,Gregory D. Hager,Jeffrey H. Siewerdsen
标识
DOI:10.1117/12.2613231
摘要

Purpose: Recent neurosurgical techniques require accurate targeting of deep-brain structures even in the presence of deformation due to egress of cerebrospinal fluid (CSF) during surgical access. Prior work reported Structure-from-Motion (SfM) based methods for endoscopic guidance using 3D reconstruction. We are developing feature detection and description methods for a real-time 3D endoscopic navigation system using simultaneous localization and mapping (SLAM) to for accurate and near real-time registration. Methods: Feature detectors and descriptors were evaluated in SLAM reconstruction in anthropomorphic phantom studies emulating neuroendoscopy. The experimental system utilized a mobile UR3e robot (Universal Robots, Denmark) and ventriculoscope (Karl Storz, Tuttlingen, Germany) affixed to the end effector as a repeatable ventriculoscopy platform. Experiments were conducted to quantify optimal feature detection parameters in scale-space. Neuroendoscopic images acquired in traversal of the lateral and third ventricles provided a rich feature space of vessels and other structures on ventricular walls supporting feature detection and 3D point-cloud reconstruction. Performance was evaluated in terms of the mean number of features detected per frame and the algorithm runtime. Results: Parameter search in scale-space for feature detection demonstrated the dependence on the mean number of features per image and the points of diminishing return in parameter selection (e.g., the number of octaves and scale levels) and tradeoffs in runtime. Nominal parameters were identified as 3 octaves and 9 scale levels, with a mean number of features detected as 492 and 806 respectively. Conclusions: The system for neuroendoscopic guidance based on SLAM 3D point-cloud reconstruction provided a promising platform for the development of robot-assisted endoscopic neurosurgery. The studies reported in this work provided an essential basis for rigorous selection of parameters for feature detection. Future work aims to further develop the SLAM framework, assess the geometric accuracy of reconstruction, and translate methods to clinical studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nkmenghan完成签到,获得积分10
刚刚
Niraaaa发布了新的文献求助10
2秒前
田雨完成签到 ,获得积分0
2秒前
Rrr发布了新的文献求助10
2秒前
さくま完成签到,获得积分10
2秒前
a龙完成签到,获得积分10
2秒前
落雪慕卿颜完成签到,获得积分10
3秒前
5秒前
科研通AI2S应助研友_8KX15L采纳,获得10
5秒前
龙抬头完成签到,获得积分10
5秒前
洁净的寒安完成签到,获得积分10
6秒前
热心小松鼠完成签到,获得积分10
6秒前
SwapExisting发布了新的文献求助10
7秒前
SwapExisting发布了新的文献求助10
7秒前
GGBOND完成签到,获得积分10
7秒前
SwapExisting发布了新的文献求助10
7秒前
SwapExisting发布了新的文献求助10
7秒前
SwapExisting发布了新的文献求助10
7秒前
柚子茶完成签到,获得积分10
8秒前
hh完成签到,获得积分20
8秒前
小李完成签到,获得积分10
9秒前
knn完成签到 ,获得积分10
10秒前
wbb完成签到 ,获得积分10
11秒前
脑洞疼应助严笑容采纳,获得10
12秒前
Rrr完成签到,获得积分10
12秒前
书生发布了新的文献求助10
12秒前
13秒前
柚子茶发布了新的文献求助20
13秒前
selinann完成签到,获得积分10
13秒前
科研通AI2S应助wjw采纳,获得10
15秒前
15秒前
张占完成签到,获得积分10
16秒前
健壮问兰完成签到 ,获得积分10
17秒前
彩色完成签到,获得积分10
18秒前
小羊发布了新的文献求助10
20秒前
憨憨完成签到,获得积分10
22秒前
蟹老板完成签到,获得积分10
23秒前
Sunny完成签到,获得积分10
26秒前
北阳完成签到,获得积分10
26秒前
tdtk完成签到,获得积分10
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807511
捐赠科研通 2450069
什么是DOI,文献DOI怎么找? 1303637
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350