生物
曼氏血吸虫
丙二醛
超氧化物歧化酶
杀螺剂
氧化应激
微生物学
生物化学
血吸虫病
蜗牛
免疫学
生态学
蠕虫
作者
Mostafa Y. Morad,Heba El-Sayed,Ahmed A. Elhenawy,Shereen M. Korany,Abeer S. Alofi,Amina M. Ibrahim
摘要
Schistosomiasis is a tropical disease with socioeconomic problems. The goal of this study was to determine the influence of myco-synthesized nano-selenium (SeNPs) as a molluscicide on Biomphlaria alexandrina snails, with the goal of reducing disease spread via non-toxic routes. In this study, Penicillium chrysogenum culture filtrate metabolites were used as a reductant for selenium ions to form nano-selenium. The SeNPs were characterized via UV-Vis spectrophotometer, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD). Myco-synthesized SeNPs had a significant molluscicidal effect on B. alexandrina snails after 96 h of exposure at a concentration of 5.96 mg/L. SeNPs also had miracidicidal and cercaricidal properties against S. mansoni. Some alterations were observed in the hemocytes of snails exposed to SeNPs, including the formation of pseudopodia and an increasing number of granules. Furthermore, lipid peroxide, nitric oxide (NO), malondialdehyde (MDA), and glutathione s-transferase (GST) increased significantly in a dose-dependent manner, while superoxide dismutase (SOD) decreased. The comet assay revealed that myco-synthesized SeNPs could cause breaks in the DNA levels. In silico study revealed that SeNPs had promising antioxidant properties. In conclusion, myco-synthesized SeNPs have the potential to be used as molluscicides and larvicides.
科研通智能强力驱动
Strongly Powered by AbleSci AI