未折叠蛋白反应
内质网
蛋白质毒性
自噬
细胞生物学
癌细胞
癌症研究
生物
化学
癌症
蛋白质折叠
生物化学
细胞凋亡
遗传学
作者
Sandhya Chipurupalli,Raja Ganesan,Giulia Martini,Luigi Mele,Alessio Reggio,Marianna Esposito,Elango Kannan,Vigneshwaran Namasivayam,Paolo Grumati,Vincenzo Desiderio,Nirmal Robinson
标识
DOI:10.1038/s41419-022-04813-w
摘要
In the tumor microenvironment, cancer cells experience hypoxia resulting in the accumulation of misfolded/unfolded proteins largely in the endoplasmic reticulum (ER). Consequently, ER proteotoxicity elicits unfolded protein response (UPR) as an adaptive mechanism to resolve ER stress. In addition to canonical UPR, proteotoxicity also stimulates the selective, autophagy-dependent, removal of discrete ER domains loaded with misfolded proteins to further alleviate ER stress. These mechanisms can favor cancer cell growth, metastasis, and long-term survival. Our investigations reveal that during hypoxia-induced ER stress, the ER-phagy receptor FAM134B targets damaged portions of ER into autophagosomes to restore ER homeostasis in cancer cells. Loss of FAM134B in breast cancer cells results in increased ER stress and reduced cell proliferation. Mechanistically, upon sensing hypoxia-induced proteotoxic stress, the ER chaperone BiP forms a complex with FAM134B and promotes ER-phagy. To prove the translational implication of our mechanistic findings, we identified vitexin as a pharmacological agent that disrupts FAM134B-BiP complex, inhibits ER-phagy, and potently suppresses breast cancer progression in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI