Establishment of aerosol optical depth dataset in the Sichuan Basin by the random forest approach

随机森林 气溶胶 环境科学 构造盆地 遥感 气象学 地理 地质学 计算机科学 人工智能 地貌学
作者
Mengjiao Jiang,Zhihang Chen,Yinshan Yang,Changjian Ni,Qi Yang
出处
期刊:Atmospheric Pollution Research [Elsevier BV]
卷期号:13 (5): 101394-101394 被引量:10
标识
DOI:10.1016/j.apr.2022.101394
摘要

The Sichuan Basin has become one of the four city clusters and heavy polluted regions in China. In this study, the random forest (RF) machine learning method and multiple datasets are used to establish aerosol optical depth (AOD) dataset in the cloudy Sichuan Basin. Multiple datasets include ground-based PM 10 and PM 2.5 , the AOD from the Sun-sky radiometer Observation Network (SONET) and the Second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) aerosol reanalysis, and several meteorological variables. The correlation analysis, variance inflation factor method, covariance test, and important scores are used to select variables for the model. Eight independent variables, including MERRA-2 AOD, PM 10 , PM 2.5 /PM 10 , low cloud cover, 2 m air temperature, relative humidity, wind direction and boundary layer height, and one dependent variable SONET AOD are selected for the model in Chengdu, the capital of Sichuan, and then extended to the Sichuan Basin. The 10-fold cross validation and statistical comparison of the Multi-Angle implementation of Atmospheric Correction (MAIAC) and the MERRA-2 AOD are conducted. Results show that the values of PM 10 and PM 2.5 , and MERRA-2 AOD are highest at the bottom of the basin, followed by that at the edge of the basin, and the lowest at the plateau areas. Comparing with the SONET AOD, the MERRA-2 and MAIAC underestimate the AOD in the Sichuan Basin, with the linear regression slope of 0.57 and 0.74, respectively. The RF AOD shows the best accuracy with the 10-fold cross-validation correlation coefficient of 0.79, the smallest RMSE of 0.17 and MAE of 0.14. • The AOD dataset in the cloudy Sichuan Basin is established Based on the random forest. • The AOD values are highest in winter, and lowest in summer. • The established RF AOD shows better accuracy and is suitable for the Sichuan Basin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
乐乐应助AgAin采纳,获得10
2秒前
Eason_C完成签到 ,获得积分10
2秒前
4秒前
yu完成签到,获得积分10
5秒前
CipherSage应助guozizi采纳,获得10
6秒前
蒋依伶完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
7秒前
田様应助平硕采纳,获得10
8秒前
8秒前
热心观众完成签到,获得积分10
11秒前
11秒前
Zoe发布了新的文献求助10
12秒前
含蓄的采枫完成签到,获得积分10
15秒前
董春伟应助科研通管家采纳,获得20
16秒前
隐形曼青应助科研通管家采纳,获得50
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
专注的妍应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
一路有你完成签到 ,获得积分10
16秒前
JamesPei应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
XCXC应助科研通管家采纳,获得10
17秒前
17秒前
脑洞疼应助科研通管家采纳,获得20
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
追寻鞋垫应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
AgAin发布了新的文献求助10
19秒前
赛因斯完成签到,获得积分10
19秒前
库凯伊完成签到,获得积分10
20秒前
13333发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911940
求助须知:如何正确求助?哪些是违规求助? 4187232
关于积分的说明 13003449
捐赠科研通 3955200
什么是DOI,文献DOI怎么找? 2168624
邀请新用户注册赠送积分活动 1187094
关于科研通互助平台的介绍 1094340