Establishment of aerosol optical depth dataset in the Sichuan Basin by the random forest approach

随机森林 气溶胶 环境科学 构造盆地 遥感 气象学 地理 地质学 计算机科学 人工智能 地貌学
作者
Mengjiao Jiang,Zhihang Chen,Yinshan Yang,Changjian Ni,Qi Yang
出处
期刊:Atmospheric Pollution Research [Elsevier BV]
卷期号:13 (5): 101394-101394 被引量:10
标识
DOI:10.1016/j.apr.2022.101394
摘要

The Sichuan Basin has become one of the four city clusters and heavy polluted regions in China. In this study, the random forest (RF) machine learning method and multiple datasets are used to establish aerosol optical depth (AOD) dataset in the cloudy Sichuan Basin. Multiple datasets include ground-based PM 10 and PM 2.5 , the AOD from the Sun-sky radiometer Observation Network (SONET) and the Second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) aerosol reanalysis, and several meteorological variables. The correlation analysis, variance inflation factor method, covariance test, and important scores are used to select variables for the model. Eight independent variables, including MERRA-2 AOD, PM 10 , PM 2.5 /PM 10 , low cloud cover, 2 m air temperature, relative humidity, wind direction and boundary layer height, and one dependent variable SONET AOD are selected for the model in Chengdu, the capital of Sichuan, and then extended to the Sichuan Basin. The 10-fold cross validation and statistical comparison of the Multi-Angle implementation of Atmospheric Correction (MAIAC) and the MERRA-2 AOD are conducted. Results show that the values of PM 10 and PM 2.5 , and MERRA-2 AOD are highest at the bottom of the basin, followed by that at the edge of the basin, and the lowest at the plateau areas. Comparing with the SONET AOD, the MERRA-2 and MAIAC underestimate the AOD in the Sichuan Basin, with the linear regression slope of 0.57 and 0.74, respectively. The RF AOD shows the best accuracy with the 10-fold cross-validation correlation coefficient of 0.79, the smallest RMSE of 0.17 and MAE of 0.14. • The AOD dataset in the cloudy Sichuan Basin is established Based on the random forest. • The AOD values are highest in winter, and lowest in summer. • The established RF AOD shows better accuracy and is suitable for the Sichuan Basin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狐尾完成签到,获得积分10
刚刚
缘起完成签到,获得积分10
1秒前
星辰完成签到,获得积分20
1秒前
祁乐安完成签到,获得积分10
1秒前
able应助rancho采纳,获得10
1秒前
1秒前
小周碎碎念完成签到,获得积分10
1秒前
sakiecon完成签到,获得积分10
2秒前
Akim应助外向的依风采纳,获得10
2秒前
细心书琴发布了新的文献求助30
2秒前
古茗会发布了新的文献求助10
2秒前
pp发布了新的文献求助10
2秒前
十年发布了新的文献求助10
3秒前
小二郎应助愉快的夏青采纳,获得10
3秒前
3秒前
ltt发布了新的文献求助10
3秒前
丘比特应助sssssssdsds采纳,获得10
3秒前
4秒前
GingerF应助xun采纳,获得100
4秒前
清秀颜演发布了新的文献求助10
4秒前
蕾蕾发布了新的文献求助10
5秒前
鲤鱼野狼发布了新的文献求助10
5秒前
by发布了新的文献求助30
5秒前
缥缈小夏完成签到 ,获得积分10
5秒前
维尼完成签到,获得积分10
6秒前
6秒前
6秒前
CJY发布了新的文献求助10
6秒前
6秒前
鸣笛应助懦弱的妙彤采纳,获得10
6秒前
白藤总是一坨肉完成签到 ,获得积分10
7秒前
充电宝应助动听的恋风采纳,获得10
7秒前
科研通AI6应助like10spirit采纳,获得10
7秒前
krinnme发布了新的文献求助10
7秒前
7秒前
zzz完成签到,获得积分10
7秒前
歪猴应助lulu采纳,获得10
8秒前
yinyan完成签到,获得积分10
8秒前
要减肥的狗完成签到,获得积分10
8秒前
星空哈喽完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355