Establishment of aerosol optical depth dataset in the Sichuan Basin by the random forest approach

随机森林 气溶胶 环境科学 构造盆地 遥感 气象学 地理 地质学 计算机科学 人工智能 地貌学
作者
Mengjiao Jiang,Zhihang Chen,Yinshan Yang,Changjian Ni,Qi Yang
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:13 (5): 101394-101394 被引量:10
标识
DOI:10.1016/j.apr.2022.101394
摘要

The Sichuan Basin has become one of the four city clusters and heavy polluted regions in China. In this study, the random forest (RF) machine learning method and multiple datasets are used to establish aerosol optical depth (AOD) dataset in the cloudy Sichuan Basin. Multiple datasets include ground-based PM 10 and PM 2.5 , the AOD from the Sun-sky radiometer Observation Network (SONET) and the Second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) aerosol reanalysis, and several meteorological variables. The correlation analysis, variance inflation factor method, covariance test, and important scores are used to select variables for the model. Eight independent variables, including MERRA-2 AOD, PM 10 , PM 2.5 /PM 10 , low cloud cover, 2 m air temperature, relative humidity, wind direction and boundary layer height, and one dependent variable SONET AOD are selected for the model in Chengdu, the capital of Sichuan, and then extended to the Sichuan Basin. The 10-fold cross validation and statistical comparison of the Multi-Angle implementation of Atmospheric Correction (MAIAC) and the MERRA-2 AOD are conducted. Results show that the values of PM 10 and PM 2.5 , and MERRA-2 AOD are highest at the bottom of the basin, followed by that at the edge of the basin, and the lowest at the plateau areas. Comparing with the SONET AOD, the MERRA-2 and MAIAC underestimate the AOD in the Sichuan Basin, with the linear regression slope of 0.57 and 0.74, respectively. The RF AOD shows the best accuracy with the 10-fold cross-validation correlation coefficient of 0.79, the smallest RMSE of 0.17 and MAE of 0.14. • The AOD dataset in the cloudy Sichuan Basin is established Based on the random forest. • The AOD values are highest in winter, and lowest in summer. • The established RF AOD shows better accuracy and is suitable for the Sichuan Basin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱的芷珍完成签到,获得积分10
刚刚
赘婿应助catear采纳,获得10
刚刚
hbhsjk完成签到,获得积分10
6秒前
7秒前
武雨寒发布了新的文献求助10
7秒前
数学情缘完成签到,获得积分10
7秒前
Emi完成签到 ,获得积分10
7秒前
SciGPT应助山水之乐采纳,获得10
8秒前
在水一方应助mont采纳,获得10
8秒前
8秒前
Criminology34应助左西采纳,获得10
9秒前
9秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
10秒前
happyday发布了新的文献求助10
13秒前
14秒前
芃芃完成签到 ,获得积分10
16秒前
17秒前
诺诺完成签到 ,获得积分10
20秒前
21秒前
aaaa完成签到 ,获得积分10
22秒前
mont完成签到,获得积分10
23秒前
23秒前
123456789完成签到 ,获得积分10
23秒前
23秒前
26秒前
杨震发布了新的文献求助10
26秒前
27秒前
mont发布了新的文献求助10
27秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
科研通AI6应助柔弱的芷珍采纳,获得10
30秒前
31秒前
31秒前
暗中讨饭发布了新的文献求助10
31秒前
31秒前
chao发布了新的文献求助10
32秒前
晶婷发布了新的文献求助10
33秒前
杨震完成签到,获得积分10
35秒前
大方蜡烛发布了新的文献求助10
35秒前
奋斗青发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439