Establishment of aerosol optical depth dataset in the Sichuan Basin by the random forest approach

随机森林 气溶胶 环境科学 构造盆地 遥感 气象学 地理 地质学 计算机科学 人工智能 地貌学
作者
Mengjiao Jiang,Zhihang Chen,Yinshan Yang,Changjian Ni,Qi Yang
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:13 (5): 101394-101394 被引量:10
标识
DOI:10.1016/j.apr.2022.101394
摘要

The Sichuan Basin has become one of the four city clusters and heavy polluted regions in China. In this study, the random forest (RF) machine learning method and multiple datasets are used to establish aerosol optical depth (AOD) dataset in the cloudy Sichuan Basin. Multiple datasets include ground-based PM 10 and PM 2.5 , the AOD from the Sun-sky radiometer Observation Network (SONET) and the Second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) aerosol reanalysis, and several meteorological variables. The correlation analysis, variance inflation factor method, covariance test, and important scores are used to select variables for the model. Eight independent variables, including MERRA-2 AOD, PM 10 , PM 2.5 /PM 10 , low cloud cover, 2 m air temperature, relative humidity, wind direction and boundary layer height, and one dependent variable SONET AOD are selected for the model in Chengdu, the capital of Sichuan, and then extended to the Sichuan Basin. The 10-fold cross validation and statistical comparison of the Multi-Angle implementation of Atmospheric Correction (MAIAC) and the MERRA-2 AOD are conducted. Results show that the values of PM 10 and PM 2.5 , and MERRA-2 AOD are highest at the bottom of the basin, followed by that at the edge of the basin, and the lowest at the plateau areas. Comparing with the SONET AOD, the MERRA-2 and MAIAC underestimate the AOD in the Sichuan Basin, with the linear regression slope of 0.57 and 0.74, respectively. The RF AOD shows the best accuracy with the 10-fold cross-validation correlation coefficient of 0.79, the smallest RMSE of 0.17 and MAE of 0.14. • The AOD dataset in the cloudy Sichuan Basin is established Based on the random forest. • The AOD values are highest in winter, and lowest in summer. • The established RF AOD shows better accuracy and is suitable for the Sichuan Basin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysq完成签到,获得积分10
刚刚
科研通AI5应助Una采纳,获得10
1秒前
kkjay完成签到,获得积分10
1秒前
2秒前
金枪鱼完成签到,获得积分10
3秒前
河豚完成签到,获得积分10
3秒前
你真是那个啊完成签到,获得积分10
3秒前
ysq发布了新的文献求助10
4秒前
你好啊完成签到,获得积分10
4秒前
我的文献完成签到,获得积分10
4秒前
wipmzxu完成签到,获得积分10
5秒前
6秒前
YIZHIZOU完成签到,获得积分20
6秒前
科研通AI2S应助66ds采纳,获得10
6秒前
幽默胜完成签到,获得积分10
8秒前
饱满剑封完成签到 ,获得积分10
8秒前
BowenShi完成签到 ,获得积分10
8秒前
9秒前
南宫士晋完成签到,获得积分10
9秒前
9秒前
健康的犀牛完成签到,获得积分10
9秒前
狄淇儿完成签到,获得积分10
10秒前
咚咚完成签到 ,获得积分10
11秒前
zhou发布了新的文献求助10
11秒前
大卫在分享完成签到,获得积分0
11秒前
11秒前
123完成签到 ,获得积分10
12秒前
12秒前
嬗变的天秤完成签到,获得积分10
13秒前
春分夏至完成签到,获得积分10
13秒前
临江仙完成签到 ,获得积分10
14秒前
不想长大完成签到 ,获得积分10
14秒前
科研通AI5应助南宫士晋采纳,获得10
14秒前
burninhell完成签到,获得积分10
14秒前
吉以寒完成签到,获得积分10
14秒前
15秒前
研究生完成签到 ,获得积分10
15秒前
无糖零脂发布了新的文献求助10
15秒前
Una发布了新的文献求助10
16秒前
谨慎的靖柔完成签到,获得积分10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477582
求助须知:如何正确求助?哪些是违规求助? 3069027
关于积分的说明 9110707
捐赠科研通 2760542
什么是DOI,文献DOI怎么找? 1514971
邀请新用户注册赠送积分活动 700509
科研通“疑难数据库(出版商)”最低求助积分说明 699648