石墨氮化碳
材料科学
光催化
异质结
降级(电信)
催化作用
化学工程
二硫化钼
可见光谱
光化学
载流子
电子转移
光电子学
化学
复合材料
工程类
电信
生物化学
计算机科学
作者
Jinyu Bao,Xintao Jiang,Lingzhi Huang,Wei Quan,Chenxu Zhang,Yanan Wang,Haibo Wang,Yi Zeng,Weijin Zhang,Yongxiang Ma,Shansheng Yu,Xiaoying Hu,Hongwei Tian
标识
DOI:10.1016/j.jcis.2021.12.106
摘要
Interfacial design and the co-catalyst effect are considered to be effective to achieve separation and transport of photogenerated carriers in composite photocatalysts. In this study, a Z-scheme heterojunction was successfully combined with a co-catalyst to achieve a highly efficient LaNiO3/g-C3N4/MoS2 photocatalyst. MoS2 flakes were loaded on a hybrid material surface, which was formed by LaNiO3 nanocubes embedded on layered g-C3N4, and a good heterostructure with multiple attachment sites was obtained. Experimental studies confirmed that the Z-scheme heterojunction completely preserves the strong redox ability of the photogenerated electrons and holes. As a cocatalyst, MoS2 further promoted interfacial charge separation and transport. The synergistic effect of the Z-scheme heterojunction and co-catalyst effectively realized the transfer of photogenerated carriers from "slow transfer" to "high transfer" and promoted water decomposition and pollutant degradation. Results revealed that under simulated sunlight irradiation, LaNiO3/g-C3N4/MoS2 composites exhibit superior hydrogen evolution of 45.1 μmol h-1, which is 19.1 times that of g-C3N4 and 4.9 times that of LaNiO3/g-C3N4, respectively. Moreover, the LaNiO3/g-C3N4/MoS2 Z-scheme photocatalyst exhibited excellent photocatalytic performance for antibiotic degradation and heavy-metal ion reduction under visible light. This study might provide some insights into the development of photocatalysts for solar energy conversion and environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI