材料科学
法拉第效率
氨生产
电催化剂
可逆氢电极
催化作用
化学工程
氧化物
原材料
无机化学
粒子(生态学)
电极
氨
电化学
纳米技术
冶金
化学
工作电极
物理化学
有机化学
海洋学
工程类
地质学
作者
Xiaoya Fan,Lisi Xie,Jie Liang,Yuchun Ren,Longcheng Zhang,Luchao Yue,Tingshuai Li,Yonglan Luo,Na Li,Bo Tang,Yang Liu,Shuyan Gao,Abdulmohsen Ali Alshehri,Qian Liu,Qingquan Kong,Xuping Sun
出处
期刊:Nano Research
[Springer Nature]
日期:2021-12-20
卷期号:15 (4): 3050-3055
被引量:132
标识
DOI:10.1007/s12274-021-3951-5
摘要
NH3 is an essential feedstock for fertilizer synthesis. Industry-scale NH3 synthesis mostly relies on the Haber-Bosch method, however, which suffers from massive CO2 emission and high energy consumption. Electrocatalytic NO3− reduction is an attractive substitute to the Haber-Bosch method for synthesizing NH3 under mild conditions. As this reaction will produce a variety of products, it highly desires efficient and selective electrocatalyst for NH3 generation. Here, we report in situ grown Fe3O4 particle on stainless steel (Fe3O4/SS) as a high-efficiency electrocatalyst for NO3− reduction to NH3. In 0.1 M NaOH with 0.1 M NaNO3, such Fe3O4/SS reaches a remarkable Faradaic efficiency of 91.5% and a high NH3 yield of 10,145 µg·h−1·cm−2 at −0.5 V vs. reversible hydrogen electrode (RHE). Furthermore, it owns robust structural and electrochemical stability. This work provides useful guidelines to expand the scope of metallic oxide electrocatalysts for NH3 synthesis. The catalytic mechanism is uncovered and discussed further by theoretical calculations.
科研通智能强力驱动
Strongly Powered by AbleSci AI