Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing

计算机科学 背景(考古学) 决策质量 质量管理 质量(理念) 过程(计算) 半导体器件制造 工业工程 决策模型 运筹学 人工智能 机器学习 运营管理 工程类 知识管理 管理制度 电气工程 操作系统 哲学 古生物学 认识论 薄脆饼 生物 团队效能
作者
Julian Senoner,Torbjørn H. Netland,Stefan Feuerriegel
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (8): 5704-5723 被引量:124
标识
DOI:10.1287/mnsc.2021.4190
摘要

We develop a data-driven decision model to improve process quality in manufacturing. A challenge for traditional methods in quality management is to handle high-dimensional and nonlinear manufacturing data. We address this challenge by adapting explainable artificial intelligence to the context of quality management. Specifically, we propose the use of nonlinear modeling with Shapley additive explanations to infer how a set of production parameters and the process quality of a manufacturing system are related. Thereby, we contribute a measure of process importance based on which manufacturers can prioritize processes for quality improvement. Grounded in quality management theory, our decision model selects improvement actions that target the sources of quality variation. The decision model is validated in a real-world application at a leading manufacturer of high-power semiconductors. Seeking to improve production yield, we apply our decision model to select improvement actions for a transistor chip product. We then conduct a field experiment to confirm the effectiveness of the improvement actions. Compared with the average yield in our sample, the experiment returns a reduction in yield loss of 21.7%. Furthermore, we report on results from a postexperimental rollout of the decision model, which also resulted in significant yield improvements. We demonstrate the operational value of explainable artificial intelligence by showing that critical drivers of process quality can go undiscovered by the use of traditional methods. This paper was accepted by Charles Corbett, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
天天快乐应助tfy采纳,获得10
4秒前
良辰应助李大仁采纳,获得10
4秒前
5秒前
5秒前
monly应助ww采纳,获得10
6秒前
6秒前
MedicoYang发布了新的文献求助30
6秒前
隐形曼青应助电催化丁真采纳,获得10
6秒前
丁明淘发布了新的文献求助10
7秒前
8秒前
天润佳苑完成签到,获得积分10
8秒前
8秒前
9秒前
田様应助diraczh采纳,获得10
10秒前
10秒前
漫漫楚威风完成签到,获得积分10
10秒前
无脚鸟完成签到,获得积分10
11秒前
yar应助MedicoYang采纳,获得10
12秒前
多多发布了新的文献求助10
12秒前
Chem应助MedicoYang采纳,获得20
12秒前
Lycerdoctor发布了新的文献求助10
12秒前
12秒前
良辰应助李大仁采纳,获得10
12秒前
13秒前
调研昵称发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
良辰应助Evan采纳,获得10
15秒前
虚幻寄文完成签到 ,获得积分10
16秒前
jijahui发布了新的文献求助10
16秒前
liu发布了新的文献求助10
17秒前
18秒前
朱子发布了新的文献求助10
19秒前
良辰应助李大仁采纳,获得10
20秒前
不将就1345应助ww采纳,获得10
21秒前
Toxic完成签到 ,获得积分10
22秒前
自由从筠完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304