Optimized Adaptive Neuro Fuzzy based Controller for lifetime maximization in power electronics stage for brushless DC drives

电力电子 数码产品 直流电动机 控制器(灌溉) 最大化 计算机科学 电动机 功率(物理) 控制理论(社会学) 控制工程 电气工程 工程类 人工智能 电压 数学 物理 农学 数学优化 生物 量子力学 控制(管理)
作者
N Priya,N. Rajesh,D. Sivanandakumar,N. B. Prakash
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:56: 3379-3386
标识
DOI:10.1016/j.matpr.2021.10.328
摘要

In recent days, the lifetime of the power electronics stages in electric drives is considerably degraded through the command signal from the speed controller owing to the fact that the characteristics of the power electronics stage are not considered in the design of the controller. The minimization of the power electronics lifetime creates early faults in the functioning of electric drives that majorly directly affect the industrial process where the power electronic stages are utilized. Therefore, power electronics stage for the controller is often over-designed, which decreases the performance and increment the cost, weight, and size. In electric drives, the power electronics elements operate on high-switching frequency in driving high electric power to accomplish the anticipated mechanical reference in electric brushless DC motors. With this motivation, this paper presents a new Barnacles Mating Optimizer with Adaptive Neuro Fuzzy based Controller (BMO-ANFC) for lifetime maximization in power electronics stage for brushless DC drive. The proposed BMO-ANFC technique is used to optimize the network design of the ANFC model. Besides, the BMO-ANFC technique derives an objective function involving required speed and reference temperature. In fact, the speed response of the motor and the temperature of the semiconductor are treated in the objective function to tune the fuzzy logic controller for increasing the lifetime of power electronics devices. For ensuring the enhanced outcome of the BMO-ANFC technique, a series of experiments were performed. The experimental outcomes highlighted the enhanced performance of the BMO-ANFC technique over the recent state of art controllers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
传奇3应助轻松煎饼采纳,获得10
1秒前
wjw发布了新的文献求助10
3秒前
热情大雁发布了新的文献求助10
4秒前
大可发布了新的文献求助10
4秒前
4秒前
CipherSage应助qy采纳,获得10
5秒前
5秒前
5秒前
子车语雪完成签到,获得积分20
5秒前
大模型应助柠静樨采纳,获得10
5秒前
5秒前
SciGPT应助门前大桥下采纳,获得10
6秒前
田様应助000采纳,获得10
6秒前
Starry发布了新的文献求助10
6秒前
小树完成签到 ,获得积分10
6秒前
Jarvis发布了新的文献求助10
6秒前
tuanzi发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
黄先生完成签到,获得积分10
8秒前
缓慢翠柏发布了新的文献求助10
8秒前
9秒前
好运常在发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
sk夏冰完成签到 ,获得积分10
10秒前
11秒前
wings发布了新的文献求助10
12秒前
lwg发布了新的文献求助10
12秒前
13秒前
13秒前
nonono完成签到,获得积分10
13秒前
77完成签到,获得积分10
13秒前
13秒前
13秒前
xxzzhh_student完成签到,获得积分10
15秒前
852应助小郑不过柱子采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711286
求助须知:如何正确求助?哪些是违规求助? 5202990
关于积分的说明 15263800
捐赠科研通 4863647
什么是DOI,文献DOI怎么找? 2610818
邀请新用户注册赠送积分活动 1561136
关于科研通互助平台的介绍 1518616