Optimized Adaptive Neuro Fuzzy based Controller for lifetime maximization in power electronics stage for brushless DC drives

电力电子 数码产品 直流电动机 控制器(灌溉) 最大化 计算机科学 电动机 功率(物理) 控制理论(社会学) 控制工程 电气工程 工程类 人工智能 电压 数学 物理 农学 数学优化 生物 量子力学 控制(管理)
作者
N Priya,N. Rajesh,D. Sivanandakumar,N. B. Prakash
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:56: 3379-3386
标识
DOI:10.1016/j.matpr.2021.10.328
摘要

In recent days, the lifetime of the power electronics stages in electric drives is considerably degraded through the command signal from the speed controller owing to the fact that the characteristics of the power electronics stage are not considered in the design of the controller. The minimization of the power electronics lifetime creates early faults in the functioning of electric drives that majorly directly affect the industrial process where the power electronic stages are utilized. Therefore, power electronics stage for the controller is often over-designed, which decreases the performance and increment the cost, weight, and size. In electric drives, the power electronics elements operate on high-switching frequency in driving high electric power to accomplish the anticipated mechanical reference in electric brushless DC motors. With this motivation, this paper presents a new Barnacles Mating Optimizer with Adaptive Neuro Fuzzy based Controller (BMO-ANFC) for lifetime maximization in power electronics stage for brushless DC drive. The proposed BMO-ANFC technique is used to optimize the network design of the ANFC model. Besides, the BMO-ANFC technique derives an objective function involving required speed and reference temperature. In fact, the speed response of the motor and the temperature of the semiconductor are treated in the objective function to tune the fuzzy logic controller for increasing the lifetime of power electronics devices. For ensuring the enhanced outcome of the BMO-ANFC technique, a series of experiments were performed. The experimental outcomes highlighted the enhanced performance of the BMO-ANFC technique over the recent state of art controllers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yznfly应助小伏采纳,获得30
1秒前
完美世界应助111采纳,获得10
1秒前
xc发布了新的文献求助30
3秒前
3秒前
77发布了新的文献求助20
3秒前
还不回家完成签到,获得积分20
3秒前
韩嘉琦发布了新的文献求助10
4秒前
damie完成签到 ,获得积分10
4秒前
111发布了新的文献求助10
4秒前
MWY发布了新的文献求助10
6秒前
mumu发布了新的文献求助10
6秒前
王睛发布了新的文献求助10
6秒前
Xxxxyg发布了新的文献求助10
6秒前
6秒前
7秒前
务实大雁发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI6应助子木采纳,获得10
10秒前
orixero应助还不回家采纳,获得10
10秒前
天明完成签到,获得积分10
11秒前
11秒前
11秒前
Rando发布了新的文献求助10
12秒前
Cecilia发布了新的文献求助10
12秒前
小伏发布了新的文献求助10
13秒前
大模型应助lxl220采纳,获得10
13秒前
哈哈完成签到,获得积分10
14秒前
共享精神应助碎碎采纳,获得10
14秒前
杨三多发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
sakyadamo发布了新的文献求助10
17秒前
17秒前
17秒前
无情的嫣娆完成签到,获得积分10
19秒前
fengzi151发布了新的文献求助100
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901