Optimized Adaptive Neuro Fuzzy based Controller for lifetime maximization in power electronics stage for brushless DC drives

电力电子 数码产品 直流电动机 控制器(灌溉) 最大化 计算机科学 电动机 功率(物理) 控制理论(社会学) 控制工程 电气工程 工程类 人工智能 电压 数学 物理 农学 数学优化 生物 量子力学 控制(管理)
作者
N Priya,N. Rajesh,D. Sivanandakumar,N. B. Prakash
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:56: 3379-3386
标识
DOI:10.1016/j.matpr.2021.10.328
摘要

In recent days, the lifetime of the power electronics stages in electric drives is considerably degraded through the command signal from the speed controller owing to the fact that the characteristics of the power electronics stage are not considered in the design of the controller. The minimization of the power electronics lifetime creates early faults in the functioning of electric drives that majorly directly affect the industrial process where the power electronic stages are utilized. Therefore, power electronics stage for the controller is often over-designed, which decreases the performance and increment the cost, weight, and size. In electric drives, the power electronics elements operate on high-switching frequency in driving high electric power to accomplish the anticipated mechanical reference in electric brushless DC motors. With this motivation, this paper presents a new Barnacles Mating Optimizer with Adaptive Neuro Fuzzy based Controller (BMO-ANFC) for lifetime maximization in power electronics stage for brushless DC drive. The proposed BMO-ANFC technique is used to optimize the network design of the ANFC model. Besides, the BMO-ANFC technique derives an objective function involving required speed and reference temperature. In fact, the speed response of the motor and the temperature of the semiconductor are treated in the objective function to tune the fuzzy logic controller for increasing the lifetime of power electronics devices. For ensuring the enhanced outcome of the BMO-ANFC technique, a series of experiments were performed. The experimental outcomes highlighted the enhanced performance of the BMO-ANFC technique over the recent state of art controllers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大聪明发布了新的文献求助10
刚刚
Eins完成签到 ,获得积分10
刚刚
丢丢在吗发布了新的文献求助10
刚刚
佳佳发布了新的文献求助10
刚刚
su发布了新的文献求助10
刚刚
见雨鱼完成签到 ,获得积分10
刚刚
刚刚
狗熊发布了新的文献求助10
1秒前
1秒前
打打应助追寻的问玉采纳,获得10
1秒前
a'mao'men完成签到,获得积分10
1秒前
嘟嘟发布了新的文献求助10
1秒前
思源应助PaoPao采纳,获得10
1秒前
王旭发布了新的文献求助10
2秒前
小迷糊完成签到 ,获得积分10
2秒前
2秒前
Simone发布了新的文献求助10
2秒前
昌怜烟完成签到,获得积分10
3秒前
3秒前
呢n完成签到 ,获得积分10
3秒前
4秒前
miawei完成签到,获得积分10
4秒前
生活散文发布了新的文献求助10
4秒前
VV发布了新的文献求助10
4秒前
Hoiden完成签到,获得积分10
4秒前
you完成签到,获得积分10
5秒前
liuyong完成签到,获得积分10
5秒前
海之恋心完成签到 ,获得积分10
5秒前
东邪西毒加任我行完成签到,获得积分10
5秒前
丢丢在吗完成签到,获得积分10
6秒前
6秒前
内向的隶完成签到,获得积分20
6秒前
zuozuo完成签到,获得积分10
6秒前
7秒前
啊我是那个谁完成签到,获得积分10
7秒前
标致绿茶完成签到,获得积分10
7秒前
8秒前
昭昭昭昭完成签到,获得积分10
8秒前
黄123完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977