重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Optimized Adaptive Neuro Fuzzy based Controller for lifetime maximization in power electronics stage for brushless DC drives

电力电子 数码产品 直流电动机 控制器(灌溉) 最大化 计算机科学 电动机 功率(物理) 控制理论(社会学) 控制工程 电气工程 工程类 人工智能 电压 数学 物理 农学 数学优化 生物 量子力学 控制(管理)
作者
N Priya,N. Rajesh,D. Sivanandakumar,N. B. Prakash
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:56: 3379-3386
标识
DOI:10.1016/j.matpr.2021.10.328
摘要

In recent days, the lifetime of the power electronics stages in electric drives is considerably degraded through the command signal from the speed controller owing to the fact that the characteristics of the power electronics stage are not considered in the design of the controller. The minimization of the power electronics lifetime creates early faults in the functioning of electric drives that majorly directly affect the industrial process where the power electronic stages are utilized. Therefore, power electronics stage for the controller is often over-designed, which decreases the performance and increment the cost, weight, and size. In electric drives, the power electronics elements operate on high-switching frequency in driving high electric power to accomplish the anticipated mechanical reference in electric brushless DC motors. With this motivation, this paper presents a new Barnacles Mating Optimizer with Adaptive Neuro Fuzzy based Controller (BMO-ANFC) for lifetime maximization in power electronics stage for brushless DC drive. The proposed BMO-ANFC technique is used to optimize the network design of the ANFC model. Besides, the BMO-ANFC technique derives an objective function involving required speed and reference temperature. In fact, the speed response of the motor and the temperature of the semiconductor are treated in the objective function to tune the fuzzy logic controller for increasing the lifetime of power electronics devices. For ensuring the enhanced outcome of the BMO-ANFC technique, a series of experiments were performed. The experimental outcomes highlighted the enhanced performance of the BMO-ANFC technique over the recent state of art controllers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南絮发布了新的文献求助10
1秒前
1秒前
猪皮恶人发布了新的文献求助10
1秒前
炙热晓露完成签到,获得积分10
2秒前
2秒前
wangjie发布了新的文献求助10
2秒前
欢喜秋寒发布了新的文献求助10
2秒前
CY关闭了CY文献求助
2秒前
Str0n发布了新的文献求助10
2秒前
科研通AI6应助美丽的老头采纳,获得10
2秒前
汉堡包应助RR采纳,获得10
3秒前
英姑应助TingWan采纳,获得10
4秒前
充电宝应助sunishope采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
苗苗发布了新的文献求助10
5秒前
王小梦发布了新的文献求助10
5秒前
Jsssds发布了新的文献求助10
5秒前
5秒前
hfj发布了新的文献求助30
5秒前
开放鹤轩发布了新的文献求助10
6秒前
6秒前
6秒前
霸气的小熊猫完成签到,获得积分10
6秒前
6秒前
斯文败类应助苹果亦云采纳,获得10
7秒前
EliGolden发布了新的文献求助10
7秒前
研友_nEoEy8发布了新的文献求助30
8秒前
一点点粽子完成签到,获得积分10
9秒前
气候都行完成签到,获得积分10
9秒前
壳聚糖发布了新的文献求助10
10秒前
ding应助Ysera采纳,获得10
11秒前
之柔完成签到,获得积分10
11秒前
阿辉发布了新的文献求助10
11秒前
11秒前
赵寒迟发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654