Optimized Adaptive Neuro Fuzzy based Controller for lifetime maximization in power electronics stage for brushless DC drives

电力电子 数码产品 直流电动机 控制器(灌溉) 最大化 计算机科学 电动机 功率(物理) 控制理论(社会学) 控制工程 电气工程 工程类 人工智能 电压 数学 物理 农学 数学优化 生物 量子力学 控制(管理)
作者
N Priya,N. Rajesh,D. Sivanandakumar,N. B. Prakash
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:56: 3379-3386
标识
DOI:10.1016/j.matpr.2021.10.328
摘要

In recent days, the lifetime of the power electronics stages in electric drives is considerably degraded through the command signal from the speed controller owing to the fact that the characteristics of the power electronics stage are not considered in the design of the controller. The minimization of the power electronics lifetime creates early faults in the functioning of electric drives that majorly directly affect the industrial process where the power electronic stages are utilized. Therefore, power electronics stage for the controller is often over-designed, which decreases the performance and increment the cost, weight, and size. In electric drives, the power electronics elements operate on high-switching frequency in driving high electric power to accomplish the anticipated mechanical reference in electric brushless DC motors. With this motivation, this paper presents a new Barnacles Mating Optimizer with Adaptive Neuro Fuzzy based Controller (BMO-ANFC) for lifetime maximization in power electronics stage for brushless DC drive. The proposed BMO-ANFC technique is used to optimize the network design of the ANFC model. Besides, the BMO-ANFC technique derives an objective function involving required speed and reference temperature. In fact, the speed response of the motor and the temperature of the semiconductor are treated in the objective function to tune the fuzzy logic controller for increasing the lifetime of power electronics devices. For ensuring the enhanced outcome of the BMO-ANFC technique, a series of experiments were performed. The experimental outcomes highlighted the enhanced performance of the BMO-ANFC technique over the recent state of art controllers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助离明采纳,获得10
刚刚
MJJ发布了新的文献求助10
1秒前
1秒前
SciGPT应助11采纳,获得10
1秒前
所所应助高木同学采纳,获得10
2秒前
勤奋的凌香完成签到,获得积分10
2秒前
2秒前
4秒前
wos发布了新的文献求助10
4秒前
万能图书馆应助关山采纳,获得10
5秒前
高贵黄蜂完成签到,获得积分10
5秒前
papa发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
黄景瑜发布了新的文献求助10
6秒前
6秒前
meini完成签到 ,获得积分10
7秒前
Xx发布了新的文献求助30
7秒前
小萌新完成签到,获得积分10
7秒前
清爽老九发布了新的文献求助10
7秒前
7秒前
wanci应助秀丽若灵采纳,获得10
8秒前
科研通AI5应助Ting采纳,获得10
8秒前
直率媚颜发布了新的文献求助10
8秒前
2018夏之旅完成签到 ,获得积分10
9秒前
科研达人发布了新的文献求助10
10秒前
Ava应助老木虫采纳,获得10
10秒前
独特的向梦完成签到,获得积分10
10秒前
冷傲的冷霜完成签到,获得积分10
10秒前
独特从蓉发布了新的文献求助10
10秒前
11秒前
Aggy发布了新的文献求助10
11秒前
ming发布了新的文献求助10
11秒前
科研通AI5应助闪闪采纳,获得10
12秒前
12秒前
ding应助任性的败采纳,获得10
13秒前
迟大猫应助关山采纳,获得10
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770