Precise Prediction of Promoter Strength Based on a De Novo Synthetic Promoter Library Coupled with Machine Learning

发起人 突变体 计算生物学 生物 遗传学 人工智能 数学 基因 机器学习 计算机科学 基因表达
作者
Mei Zhao,Zhenqi Yuan,Longtao Wu,Shenghu Zhou,Yu Deng
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:11 (1): 92-102 被引量:53
标识
DOI:10.1021/acssynbio.1c00117
摘要

Promoters are one of the most critical regulatory elements controlling metabolic pathways. However, the fast and accurate prediction of promoter strength remains challenging, leading to time- and labor-consuming promoter construction and characterization processes. This dilemma is caused by the lack of a big promoter library that has gradient strengths, broad dynamic ranges, and clear sequence profiles that can be used to train an artificial intelligence model of promoter strength prediction. To overcome this challenge, we constructed and characterized a mutant library of Trc promoters (Ptrc) using 83 rounds of mutation-construction-screening-characterization engineering cycles. After excluding invalid mutation sites, we established a synthetic promoter library that consisted of 3665 different variants, displaying an intensity range of more than two orders of magnitude. The strongest variant was ∼69-fold stronger than the original Ptrc and 1.52-fold stronger than a 1 mM isopropyl-β-d-thiogalactoside-driven PT7 promoter, with an ∼454-fold difference between the strongest and weakest expression levels. Using this synthetic promoter library, different machine learning models were built and optimized to explore the relationships between promoter sequences and transcriptional strength. Finally, our XgBoost model exhibited optimal performance, and we utilized this approach to precisely predict the strength of artificially designed promoter sequences (R2 = 0.88, mean absolute error = 0.15, and Pearson correlation coefficient = 0.94). Our work provides a powerful platform that enables the predictable tuning of promoters to achieve optimal transcriptional strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助aaa采纳,获得10
刚刚
涵涵涵hh发布了新的文献求助10
1秒前
科研通AI5应助敏感向雪采纳,获得10
1秒前
红炉点血发布了新的文献求助10
2秒前
2秒前
3秒前
大力发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
xiaosi完成签到 ,获得积分10
6秒前
oO完成签到 ,获得积分10
7秒前
vocrious发布了新的文献求助10
8秒前
priser de完成签到,获得积分10
9秒前
叶上发布了新的文献求助100
10秒前
yaohuang完成签到,获得积分10
10秒前
11秒前
大力完成签到,获得积分10
11秒前
万嘉俊发布了新的文献求助10
13秒前
小红花完成签到,获得积分10
14秒前
优秀发布了新的文献求助20
14秒前
BCS完成签到,获得积分0
15秒前
17秒前
18秒前
18秒前
18秒前
熊二完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
许可媛完成签到,获得积分10
19秒前
20秒前
supermark123完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
科研通AI2S应助群山采纳,获得10
22秒前
22秒前
小鹿呀完成签到,获得积分10
23秒前
纸质超人发布了新的文献求助10
23秒前
23秒前
24秒前
Hello应助董春伟采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601041
求助须知:如何正确求助?哪些是违规求助? 4010894
关于积分的说明 12417953
捐赠科研通 3690812
什么是DOI,文献DOI怎么找? 2034703
邀请新用户注册赠送积分活动 1067979
科研通“疑难数据库(出版商)”最低求助积分说明 952613