亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Precise Prediction of Promoter Strength Based on a De Novo Synthetic Promoter Library Coupled with Machine Learning

发起人 突变体 计算生物学 生物 遗传学 人工智能 数学 基因 机器学习 计算机科学 基因表达
作者
Mei Zhao,Zhenqi Yuan,Longtao Wu,Shenghu Zhou,Yu Deng
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:11 (1): 92-102 被引量:53
标识
DOI:10.1021/acssynbio.1c00117
摘要

Promoters are one of the most critical regulatory elements controlling metabolic pathways. However, the fast and accurate prediction of promoter strength remains challenging, leading to time- and labor-consuming promoter construction and characterization processes. This dilemma is caused by the lack of a big promoter library that has gradient strengths, broad dynamic ranges, and clear sequence profiles that can be used to train an artificial intelligence model of promoter strength prediction. To overcome this challenge, we constructed and characterized a mutant library of Trc promoters (Ptrc) using 83 rounds of mutation-construction-screening-characterization engineering cycles. After excluding invalid mutation sites, we established a synthetic promoter library that consisted of 3665 different variants, displaying an intensity range of more than two orders of magnitude. The strongest variant was ∼69-fold stronger than the original Ptrc and 1.52-fold stronger than a 1 mM isopropyl-β-d-thiogalactoside-driven PT7 promoter, with an ∼454-fold difference between the strongest and weakest expression levels. Using this synthetic promoter library, different machine learning models were built and optimized to explore the relationships between promoter sequences and transcriptional strength. Finally, our XgBoost model exhibited optimal performance, and we utilized this approach to precisely predict the strength of artificially designed promoter sequences (R2 = 0.88, mean absolute error = 0.15, and Pearson correlation coefficient = 0.94). Our work provides a powerful platform that enables the predictable tuning of promoters to achieve optimal transcriptional strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳落雁发布了新的文献求助10
2秒前
18秒前
旷野完成签到 ,获得积分10
25秒前
zqq完成签到,获得积分0
27秒前
周周粥完成签到 ,获得积分10
30秒前
共享精神应助khan采纳,获得10
42秒前
47秒前
khan发布了新的文献求助10
53秒前
罗玲完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助aa111采纳,获得10
1分钟前
1分钟前
nbtzy完成签到,获得积分20
1分钟前
秋日思语发布了新的文献求助10
2分钟前
2分钟前
2分钟前
luluzhu发布了新的文献求助50
2分钟前
2分钟前
栗子完成签到,获得积分10
2分钟前
多喝岩浆完成签到,获得积分10
2分钟前
水上汀州完成签到,获得积分10
2分钟前
ear发布了新的文献求助30
2分钟前
drirshad完成签到,获得积分10
2分钟前
2分钟前
aa111完成签到,获得积分10
3分钟前
可爱的函函应助lsl采纳,获得10
3分钟前
tuanheqi应助科研通管家采纳,获得80
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
Lliu完成签到,获得积分10
3分钟前
科研通AI2S应助彭瑞吉采纳,获得10
3分钟前
3分钟前
aa111发布了新的文献求助10
3分钟前
3分钟前
3分钟前
搜集达人应助义气的藏鸟采纳,获得10
3分钟前
传奇3应助平常的乘云采纳,获得10
3分钟前
ccczzz应助aa111采纳,获得20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173328
求助须知:如何正确求助?哪些是违规求助? 4363268
关于积分的说明 13585271
捐赠科研通 4211673
什么是DOI,文献DOI怎么找? 2309940
邀请新用户注册赠送积分活动 1309029
关于科研通互助平台的介绍 1256358