Precise Prediction of Promoter Strength Based on a De Novo Synthetic Promoter Library Coupled with Machine Learning

发起人 突变体 计算生物学 生物 遗传学 人工智能 数学 基因 机器学习 计算机科学 基因表达
作者
Mei Zhao,Zhenqi Yuan,Longtao Wu,Shenghu Zhou,Yu Deng
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:11 (1): 92-102 被引量:53
标识
DOI:10.1021/acssynbio.1c00117
摘要

Promoters are one of the most critical regulatory elements controlling metabolic pathways. However, the fast and accurate prediction of promoter strength remains challenging, leading to time- and labor-consuming promoter construction and characterization processes. This dilemma is caused by the lack of a big promoter library that has gradient strengths, broad dynamic ranges, and clear sequence profiles that can be used to train an artificial intelligence model of promoter strength prediction. To overcome this challenge, we constructed and characterized a mutant library of Trc promoters (Ptrc) using 83 rounds of mutation-construction-screening-characterization engineering cycles. After excluding invalid mutation sites, we established a synthetic promoter library that consisted of 3665 different variants, displaying an intensity range of more than two orders of magnitude. The strongest variant was ∼69-fold stronger than the original Ptrc and 1.52-fold stronger than a 1 mM isopropyl-β-d-thiogalactoside-driven PT7 promoter, with an ∼454-fold difference between the strongest and weakest expression levels. Using this synthetic promoter library, different machine learning models were built and optimized to explore the relationships between promoter sequences and transcriptional strength. Finally, our XgBoost model exhibited optimal performance, and we utilized this approach to precisely predict the strength of artificially designed promoter sequences (R2 = 0.88, mean absolute error = 0.15, and Pearson correlation coefficient = 0.94). Our work provides a powerful platform that enables the predictable tuning of promoters to achieve optimal transcriptional strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆幻枫发布了新的文献求助10
1秒前
Owen应助波波采纳,获得10
1秒前
1秒前
2秒前
FashionBoy应助believe采纳,获得10
2秒前
丘比特应助卡尔采纳,获得10
2秒前
万诚信发布了新的文献求助10
2秒前
3秒前
Ava应助露似珍珠月似弓采纳,获得10
3秒前
3秒前
科研小白发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
哆啦的空间站应助gao采纳,获得10
5秒前
粗心的电源完成签到,获得积分10
5秒前
6秒前
guo发布了新的文献求助10
6秒前
桐桐应助想人陪采纳,获得10
7秒前
7秒前
思源应助看文献了采纳,获得10
7秒前
9秒前
大牛关注了科研通微信公众号
9秒前
bkagyin应助快来看文献采纳,获得10
9秒前
kk发布了新的文献求助10
9秒前
暴躁的梦发布了新的文献求助10
10秒前
wll完成签到,获得积分20
10秒前
10秒前
vikoel完成签到,获得积分10
10秒前
善学以致用应助霸霸采纳,获得10
10秒前
10秒前
露似珍珠月似弓完成签到,获得积分10
10秒前
11秒前
11秒前
yys完成签到,获得积分10
13秒前
共享精神应助十谦先采纳,获得10
13秒前
田様应助eyre采纳,获得10
13秒前
13秒前
喃恬发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641