Precise Prediction of Promoter Strength Based on a De Novo Synthetic Promoter Library Coupled with Machine Learning

发起人 突变体 计算生物学 生物 遗传学 人工智能 数学 基因 机器学习 计算机科学 基因表达
作者
Mei Zhao,Zhenqi Yuan,Longtao Wu,Shenghu Zhou,Yu Deng
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:11 (1): 92-102 被引量:45
标识
DOI:10.1021/acssynbio.1c00117
摘要

Promoters are one of the most critical regulatory elements controlling metabolic pathways. However, the fast and accurate prediction of promoter strength remains challenging, leading to time- and labor-consuming promoter construction and characterization processes. This dilemma is caused by the lack of a big promoter library that has gradient strengths, broad dynamic ranges, and clear sequence profiles that can be used to train an artificial intelligence model of promoter strength prediction. To overcome this challenge, we constructed and characterized a mutant library of Trc promoters (Ptrc) using 83 rounds of mutation-construction-screening-characterization engineering cycles. After excluding invalid mutation sites, we established a synthetic promoter library that consisted of 3665 different variants, displaying an intensity range of more than two orders of magnitude. The strongest variant was ∼69-fold stronger than the original Ptrc and 1.52-fold stronger than a 1 mM isopropyl-β-d-thiogalactoside-driven PT7 promoter, with an ∼454-fold difference between the strongest and weakest expression levels. Using this synthetic promoter library, different machine learning models were built and optimized to explore the relationships between promoter sequences and transcriptional strength. Finally, our XgBoost model exhibited optimal performance, and we utilized this approach to precisely predict the strength of artificially designed promoter sequences (R2 = 0.88, mean absolute error = 0.15, and Pearson correlation coefficient = 0.94). Our work provides a powerful platform that enables the predictable tuning of promoters to achieve optimal transcriptional strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
眼睛大紊完成签到,获得积分10
3秒前
英俊的铭应助绿大暗采纳,获得10
3秒前
大虫发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
Dina发布了新的文献求助10
5秒前
夏艳青完成签到,获得积分10
5秒前
5秒前
sda发布了新的文献求助10
7秒前
lxy发布了新的文献求助10
7秒前
小马完成签到,获得积分10
8秒前
8秒前
8秒前
酷波er应助甜美的白卉采纳,获得10
9秒前
火山发布了新的文献求助10
9秒前
sda完成签到,获得积分10
10秒前
10秒前
优美元瑶完成签到,获得积分10
11秒前
啦啦啦完成签到 ,获得积分10
11秒前
12秒前
小鲤鱼完成签到,获得积分10
13秒前
栓牛哥发布了新的文献求助10
13秒前
科目三应助ShengQ采纳,获得10
14秒前
16秒前
青灿笑完成签到,获得积分10
17秒前
Moon会努力摘星星完成签到,获得积分10
17秒前
17秒前
yao发布了新的文献求助10
18秒前
19秒前
QINGLAN完成签到,获得积分10
19秒前
20秒前
康康完成签到,获得积分10
20秒前
23秒前
LY0430完成签到,获得积分10
24秒前
隐形曼青应助i说晚安采纳,获得10
25秒前
26秒前
胖丁完成签到,获得积分10
27秒前
钰姝完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821