漆酶
木质素
化学
分子质量
睾丸小孢子虫
有机化学
色谱法
酶
作者
Lijie Wang,Chao Xue,Gary Owens,Zuliang Chen
标识
DOI:10.1016/j.biortech.2021.126565
摘要
The laccase enzymatic characteristics and delignification processes of rice straw by Comamonas testosteroni FJ17 were investigated. Artificial intelligence modeling and molecular docking revealed the specific functional properties involved in the interaction between laccase and lignin compounds with a maximum laccase activity of 2016.7 U L-1 at 24 h. Scanning electron microscopy and X-ray diffractometer analysis confirmed that laccase caused fractures and holes on the surface of rice straw, where crystallinity decrease from 45.3 to 39.9%, and lignin content decreased from 19.0 to 10.3%. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analysis showed that the main delignification process for laccase was via β-o-4 and α-aryl ether cleavage, which generated several small molecular products. The laccase gene was cloned and bioinformatics analysis presented 317 amino acids with a predicted molecular weight of 33.13 kDa. Finally, laccase protein was found to have low binding energies with all lignin compounds tested, and lignin compounds were oxidized by laccase through hydrogen-bonding interactions with the amino acid residues.
科研通智能强力驱动
Strongly Powered by AbleSci AI