Volumetric segmentation of ground glass nodule based on 3D attentional cascaded residual U‐Net and conditional random field

人工智能 分割 计算机科学 残余物 深度学习 体素 条件随机场 模式识别(心理学) Sørensen–骰子系数 图像分割 规范化(社会学) 计算机视觉 算法 人类学 社会学
作者
Hui Chen,Jiyu Liu,Liangjian Lu,Ting Wang,Xiaomin Xu,Aina Chu,Weijun Peng,Jing Gong,Wei Tang,Yajia Gu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (2): 1097-1107 被引量:8
标识
DOI:10.1002/mp.15423
摘要

Ground glass nodule (GGN) segmentation is one of the important and challenging tasks in diagnosing early-stage lung adenocarcinomas. Manually delineating of 3D GGN in a computed tomography (CT) image is a subjective, laborious, and tedious task, which presents poor repeatability.To reduce the annotation burden and improve the segmentation performance, this study proposes a 3D deep learning-based volumetric segmentation model to segment the GGN in CT images.A total of 379 GGNs were retrospectively collected from the public database, Shanghai Pulmonary Hospital (SHPH), and Fudan University Shanghai Cancer Center (FUSCC). First, a series of image preprocessing techniques involving image resampling, intensity normalization, 3D nodule patch cropping, and data augmentation, were adopted to generate the input images for the deep learning model by using CT scans. Then, a 3D attentional cascaded residual network (ACRU-Net) was proposed to develop the deep learning-based segmentation model by using the residual network and the atrous spatial pyramid pooling module. To improve the model performance, a voxel-based conditional random field (CRF) method was used to optimize the segmentation results. Finally, a balanced cross-entropy and Dice combined loss function was applied to train and build the segmentation model.Testing on SHPH and FUSCC datasets, the proposed method generates the Dice coefficients of 0.721 ± 0.167 and 0.733 ± 0.100, respectively, which are higher than those of 3D residual U-Net and ACRU-Net without CRF optimization.The results demonstrated that combining 3D ACRU-Net and CRF effectively improved the GGN segmentation performance. The proposed segmentation model may provide a potential tool to help the radiologist in the segmentation and diagnosis of 3D GGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的怜阳完成签到,获得积分10
1秒前
自信号厂完成签到 ,获得积分10
1秒前
小蘑菇应助ccc采纳,获得10
2秒前
shuo完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
aich完成签到,获得积分10
3秒前
上官若男应助YE采纳,获得10
4秒前
Jasper应助YaoX采纳,获得10
4秒前
天天快乐应助威武绿真采纳,获得10
4秒前
MADKAI发布了新的文献求助10
4秒前
5秒前
慕青应助April采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
Xu发布了新的文献求助10
5秒前
manan发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
张张完成签到,获得积分10
6秒前
Dream发布了新的文献求助30
6秒前
6秒前
henry完成签到,获得积分10
7秒前
雾蓝发布了新的文献求助10
7秒前
桃子发布了新的文献求助10
7秒前
烟花应助刘星星采纳,获得10
8秒前
一只鱼完成签到,获得积分10
8秒前
YY发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
qianmo完成签到 ,获得积分10
8秒前
jennifercui发布了新的文献求助10
9秒前
rh1006完成签到,获得积分10
9秒前
mrjohn发布了新的文献求助10
9秒前
9秒前
YE完成签到 ,获得积分20
11秒前
李繁蕊发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740