亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Volumetric segmentation of ground glass nodule based on 3D attentional cascaded residual U‐Net and conditional random field

人工智能 分割 计算机科学 残余物 深度学习 体素 条件随机场 模式识别(心理学) Sørensen–骰子系数 图像分割 规范化(社会学) 计算机视觉 算法 社会学 人类学
作者
Hui Chen,Jiyu Liu,Liangjian Lu,Ting Wang,Xiaomin Xu,Aina Chu,Weijun Peng,Jing Gong,Wei Tang,Yajia Gu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (2): 1097-1107 被引量:8
标识
DOI:10.1002/mp.15423
摘要

Ground glass nodule (GGN) segmentation is one of the important and challenging tasks in diagnosing early-stage lung adenocarcinomas. Manually delineating of 3D GGN in a computed tomography (CT) image is a subjective, laborious, and tedious task, which presents poor repeatability.To reduce the annotation burden and improve the segmentation performance, this study proposes a 3D deep learning-based volumetric segmentation model to segment the GGN in CT images.A total of 379 GGNs were retrospectively collected from the public database, Shanghai Pulmonary Hospital (SHPH), and Fudan University Shanghai Cancer Center (FUSCC). First, a series of image preprocessing techniques involving image resampling, intensity normalization, 3D nodule patch cropping, and data augmentation, were adopted to generate the input images for the deep learning model by using CT scans. Then, a 3D attentional cascaded residual network (ACRU-Net) was proposed to develop the deep learning-based segmentation model by using the residual network and the atrous spatial pyramid pooling module. To improve the model performance, a voxel-based conditional random field (CRF) method was used to optimize the segmentation results. Finally, a balanced cross-entropy and Dice combined loss function was applied to train and build the segmentation model.Testing on SHPH and FUSCC datasets, the proposed method generates the Dice coefficients of 0.721 ± 0.167 and 0.733 ± 0.100, respectively, which are higher than those of 3D residual U-Net and ACRU-Net without CRF optimization.The results demonstrated that combining 3D ACRU-Net and CRF effectively improved the GGN segmentation performance. The proposed segmentation model may provide a potential tool to help the radiologist in the segmentation and diagnosis of 3D GGN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助读书的时候采纳,获得80
刚刚
落沧完成签到 ,获得积分10
刚刚
充电宝应助西瓜霜采纳,获得10
3秒前
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
传奇3应助读书的时候采纳,获得10
30秒前
JodieZhu完成签到,获得积分10
33秒前
嘻嘻哈哈发布了新的文献求助10
57秒前
59秒前
wz完成签到,获得积分10
1分钟前
JamesPei应助manjusaka采纳,获得10
1分钟前
bkagyin应助读书的时候采纳,获得10
1分钟前
1分钟前
manjusaka发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
嘻嘻哈哈发布了新的文献求助10
2分钟前
2分钟前
3分钟前
大模型应助读书的时候采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
刻苦的艳发布了新的文献求助10
4分钟前
酷波er应助刻苦的艳采纳,获得30
4分钟前
4分钟前
5分钟前
果酱完成签到,获得积分10
5分钟前
5分钟前
娟子完成签到,获得积分10
5分钟前
wanci应助读书的时候采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732400
求助须知:如何正确求助?哪些是违规求助? 5338949
关于积分的说明 15322212
捐赠科研通 4877990
什么是DOI,文献DOI怎么找? 2620796
邀请新用户注册赠送积分活动 1570000
关于科研通互助平台的介绍 1526672