亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images

计算机科学 人工智能 分割 视盘 眼底(子宫) 模式识别(心理学) 任务(项目管理) 青光眼 加权 图像分割 像素 计算机视觉 人工神经网络 深度学习 机器学习 眼科 医学 管理 放射科 经济
作者
Álvaro S. Hervella,José Rouco,Jorge Novo,Marcos Ortega
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:116: 108347-108347 被引量:50
标识
DOI:10.1016/j.asoc.2021.108347
摘要

The automated analysis of eye fundus images is crucial towards facilitating the screening and early diagnosis of glaucoma. Nowadays, there are two common alternatives for the diagnosis of this disease using deep neural networks. One is the segmentation of the optic disc and cup followed by the morphological analysis of these structures. The other is to directly address the diagnosis as an image classification task. The segmentation approach presents the advantage of using pixel-level labels with precise morphological information for training. However, while this detailed training feedback is not available for the classification approach, in this case the image-level labels may allow the discovery of additional non-morphological cues that are also relevant for the diagnosis. In this work, we propose a novel multi-task approach for the simultaneous classification of glaucoma and segmentation of the optic disc and cup. This approach can improve the overall performance by taking advantage of both pixel-level and image-level labels during the network training. Additionally, the segmentation maps that are predicted together with the diagnosis allow the extraction of relevant biomarkers such as the cup-to-disc ratio. The proposed methodology presents two relevant technical novelties. First, a network architecture for simultaneous segmentation and classification that increases the number of shared parameters between both tasks. Second, a multi-adaptive optimization strategy that ensures that both tasks contribute similarly to the parameter updates during training, avoiding the use of loss weighting hyperparameters. To validate our proposal, an exhaustive experimentation was performed on the public REFUGE and DRISHTI-GS datasets. The results show that our proposal outperforms comparable multi-task baselines and is highly competitive with existing state-of-the-art approaches. Additionally, the provided ablation study shows that both the network architecture and the optimization approach are independently advantageous for multi-task learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
8秒前
KSung完成签到 ,获得积分10
14秒前
18秒前
临河盗龙发布了新的文献求助30
21秒前
临河盗龙完成签到,获得积分20
29秒前
zhanglq完成签到,获得积分10
29秒前
54秒前
studystudy完成签到,获得积分10
57秒前
激动的似狮完成签到,获得积分10
58秒前
自律发布了新的文献求助10
1分钟前
NexusExplorer应助fukase采纳,获得10
1分钟前
自律完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
fukase完成签到,获得积分10
1分钟前
fukase发布了新的文献求助10
1分钟前
jiangjiang完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
tsttst完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Qiuyajing完成签到,获得积分10
2分钟前
2分钟前
星辰大海应助兴奋的嘉懿采纳,获得10
2分钟前
祖之微笑发布了新的文献求助10
2分钟前
兴奋的嘉懿完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
葱饼完成签到 ,获得积分10
3分钟前
香蕉觅云应助sunshihaoya采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204743
捐赠科研通 3257502
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629