End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images

计算机科学 人工智能 分割 视盘 眼底(子宫) 模式识别(心理学) 任务(项目管理) 青光眼 加权 图像分割 像素 计算机视觉 人工神经网络 深度学习 机器学习 眼科 医学 管理 放射科 经济
作者
Álvaro S. Hervella,José Rouco,Jorge Novo,Marcos Ortega
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:116: 108347-108347 被引量:50
标识
DOI:10.1016/j.asoc.2021.108347
摘要

The automated analysis of eye fundus images is crucial towards facilitating the screening and early diagnosis of glaucoma. Nowadays, there are two common alternatives for the diagnosis of this disease using deep neural networks. One is the segmentation of the optic disc and cup followed by the morphological analysis of these structures. The other is to directly address the diagnosis as an image classification task. The segmentation approach presents the advantage of using pixel-level labels with precise morphological information for training. However, while this detailed training feedback is not available for the classification approach, in this case the image-level labels may allow the discovery of additional non-morphological cues that are also relevant for the diagnosis. In this work, we propose a novel multi-task approach for the simultaneous classification of glaucoma and segmentation of the optic disc and cup. This approach can improve the overall performance by taking advantage of both pixel-level and image-level labels during the network training. Additionally, the segmentation maps that are predicted together with the diagnosis allow the extraction of relevant biomarkers such as the cup-to-disc ratio. The proposed methodology presents two relevant technical novelties. First, a network architecture for simultaneous segmentation and classification that increases the number of shared parameters between both tasks. Second, a multi-adaptive optimization strategy that ensures that both tasks contribute similarly to the parameter updates during training, avoiding the use of loss weighting hyperparameters. To validate our proposal, an exhaustive experimentation was performed on the public REFUGE and DRISHTI-GS datasets. The results show that our proposal outperforms comparable multi-task baselines and is highly competitive with existing state-of-the-art approaches. Additionally, the provided ablation study shows that both the network architecture and the optimization approach are independently advantageous for multi-task learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光土豆完成签到,获得积分10
刚刚
peaceone完成签到,获得积分10
刚刚
lin应助chnningji采纳,获得10
1秒前
1秒前
1秒前
星辰大海应助hu采纳,获得10
1秒前
可爱电话发布了新的文献求助10
1秒前
2秒前
2秒前
sfef发布了新的文献求助10
2秒前
宁静致远发布了新的文献求助10
3秒前
3秒前
剩下的盛夏完成签到,获得积分10
3秒前
3秒前
4秒前
柚子发布了新的文献求助10
4秒前
5秒前
科研通AI5应助刘闪闪采纳,获得10
5秒前
ZhiquanYu发布了新的文献求助10
5秒前
yan123发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
烟花应助liudongjun采纳,获得10
6秒前
6秒前
6秒前
小小邹完成签到,获得积分10
7秒前
Engen发布了新的文献求助10
7秒前
7秒前
7秒前
希望天下0贩的0应助aishuye采纳,获得20
8秒前
半山完成签到 ,获得积分10
8秒前
8秒前
lifang发布了新的文献求助10
8秒前
linxcc发布了新的文献求助10
9秒前
10秒前
CCC发布了新的文献求助10
10秒前
无花果应助勤劳妙彤采纳,获得10
10秒前
10秒前
SRQ发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827