End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images

计算机科学 人工智能 分割 视盘 眼底(子宫) 模式识别(心理学) 任务(项目管理) 青光眼 加权 图像分割 像素 计算机视觉 人工神经网络 深度学习 机器学习 眼科 医学 管理 放射科 经济
作者
Álvaro S. Hervella,José Rouco,Jorge Novo,Marcos Ortega
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:116: 108347-108347 被引量:50
标识
DOI:10.1016/j.asoc.2021.108347
摘要

The automated analysis of eye fundus images is crucial towards facilitating the screening and early diagnosis of glaucoma. Nowadays, there are two common alternatives for the diagnosis of this disease using deep neural networks. One is the segmentation of the optic disc and cup followed by the morphological analysis of these structures. The other is to directly address the diagnosis as an image classification task. The segmentation approach presents the advantage of using pixel-level labels with precise morphological information for training. However, while this detailed training feedback is not available for the classification approach, in this case the image-level labels may allow the discovery of additional non-morphological cues that are also relevant for the diagnosis. In this work, we propose a novel multi-task approach for the simultaneous classification of glaucoma and segmentation of the optic disc and cup. This approach can improve the overall performance by taking advantage of both pixel-level and image-level labels during the network training. Additionally, the segmentation maps that are predicted together with the diagnosis allow the extraction of relevant biomarkers such as the cup-to-disc ratio. The proposed methodology presents two relevant technical novelties. First, a network architecture for simultaneous segmentation and classification that increases the number of shared parameters between both tasks. Second, a multi-adaptive optimization strategy that ensures that both tasks contribute similarly to the parameter updates during training, avoiding the use of loss weighting hyperparameters. To validate our proposal, an exhaustive experimentation was performed on the public REFUGE and DRISHTI-GS datasets. The results show that our proposal outperforms comparable multi-task baselines and is highly competitive with existing state-of-the-art approaches. Additionally, the provided ablation study shows that both the network architecture and the optimization approach are independently advantageous for multi-task learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如泣草芥完成签到,获得积分0
6秒前
oqura完成签到 ,获得积分10
8秒前
zhangyx完成签到 ,获得积分0
8秒前
小青完成签到 ,获得积分10
10秒前
11秒前
左婷完成签到 ,获得积分10
12秒前
14秒前
roy_chiang完成签到,获得积分0
15秒前
拟态橙完成签到 ,获得积分10
16秒前
17秒前
Qi完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
aaiirrii完成签到,获得积分10
19秒前
武雨寒发布了新的文献求助10
22秒前
24秒前
稳重母鸡完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
gaojian完成签到 ,获得积分10
39秒前
Kyra12完成签到,获得积分10
43秒前
baa完成签到,获得积分10
45秒前
调皮平蓝完成签到,获得积分10
48秒前
武雨寒完成签到,获得积分20
48秒前
猪鼓励完成签到,获得积分10
51秒前
GG爆完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
55秒前
Maestro_S应助科研通管家采纳,获得10
57秒前
Maestro_S应助科研通管家采纳,获得10
57秒前
mrconli完成签到,获得积分10
57秒前
ksl完成签到 ,获得积分10
58秒前
落寞的幻竹完成签到,获得积分10
58秒前
ldr888完成签到,获得积分10
59秒前
飞儿完成签到 ,获得积分10
1分钟前
欢呼的雨琴完成签到 ,获得积分10
1分钟前
tcy完成签到,获得积分10
1分钟前
尔玉完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
专注德地完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628787
求助须知:如何正确求助?哪些是违规求助? 4718375
关于积分的说明 14964910
捐赠科研通 4786643
什么是DOI,文献DOI怎么找? 2555951
邀请新用户注册赠送积分活动 1517087
关于科研通互助平台的介绍 1477841