亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images

计算机科学 人工智能 分割 视盘 眼底(子宫) 模式识别(心理学) 任务(项目管理) 青光眼 加权 图像分割 像素 计算机视觉 人工神经网络 深度学习 机器学习 眼科 医学 管理 放射科 经济
作者
Álvaro S. Hervella,José Rouco,Jorge Novo,Marcos Ortega
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:116: 108347-108347 被引量:50
标识
DOI:10.1016/j.asoc.2021.108347
摘要

The automated analysis of eye fundus images is crucial towards facilitating the screening and early diagnosis of glaucoma. Nowadays, there are two common alternatives for the diagnosis of this disease using deep neural networks. One is the segmentation of the optic disc and cup followed by the morphological analysis of these structures. The other is to directly address the diagnosis as an image classification task. The segmentation approach presents the advantage of using pixel-level labels with precise morphological information for training. However, while this detailed training feedback is not available for the classification approach, in this case the image-level labels may allow the discovery of additional non-morphological cues that are also relevant for the diagnosis. In this work, we propose a novel multi-task approach for the simultaneous classification of glaucoma and segmentation of the optic disc and cup. This approach can improve the overall performance by taking advantage of both pixel-level and image-level labels during the network training. Additionally, the segmentation maps that are predicted together with the diagnosis allow the extraction of relevant biomarkers such as the cup-to-disc ratio. The proposed methodology presents two relevant technical novelties. First, a network architecture for simultaneous segmentation and classification that increases the number of shared parameters between both tasks. Second, a multi-adaptive optimization strategy that ensures that both tasks contribute similarly to the parameter updates during training, avoiding the use of loss weighting hyperparameters. To validate our proposal, an exhaustive experimentation was performed on the public REFUGE and DRISHTI-GS datasets. The results show that our proposal outperforms comparable multi-task baselines and is highly competitive with existing state-of-the-art approaches. Additionally, the provided ablation study shows that both the network architecture and the optimization approach are independently advantageous for multi-task learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
Jerry发布了新的文献求助10
23秒前
24秒前
充电宝应助Re采纳,获得10
38秒前
Jerry完成签到,获得积分20
40秒前
量子星尘发布了新的文献求助10
50秒前
Lina完成签到,获得积分10
59秒前
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
Re发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
于yu完成签到 ,获得积分10
2分钟前
2分钟前
开心完成签到 ,获得积分10
2分钟前
Re发布了新的文献求助10
2分钟前
sidashu完成签到,获得积分10
2分钟前
无花果应助Re采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
自律发布了新的文献求助10
3分钟前
脑洞疼应助wzy采纳,获得10
3分钟前
比格大王应助clearlove采纳,获得10
4分钟前
4分钟前
wzy发布了新的文献求助10
4分钟前
悟空爱吃酥橙完成签到,获得积分10
4分钟前
4分钟前
自律完成签到,获得积分10
4分钟前
ma121完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
刺1656发布了新的文献求助10
5分钟前
5分钟前
jiangmi完成签到,获得积分10
6分钟前
Sene完成签到,获得积分10
6分钟前
andrele应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443