End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images

计算机科学 人工智能 分割 视盘 眼底(子宫) 模式识别(心理学) 任务(项目管理) 青光眼 加权 图像分割 像素 计算机视觉 人工神经网络 深度学习 机器学习 眼科 医学 管理 放射科 经济
作者
Álvaro S. Hervella,José Rouco,Jorge Novo,Marcos Ortega
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:116: 108347-108347 被引量:50
标识
DOI:10.1016/j.asoc.2021.108347
摘要

The automated analysis of eye fundus images is crucial towards facilitating the screening and early diagnosis of glaucoma. Nowadays, there are two common alternatives for the diagnosis of this disease using deep neural networks. One is the segmentation of the optic disc and cup followed by the morphological analysis of these structures. The other is to directly address the diagnosis as an image classification task. The segmentation approach presents the advantage of using pixel-level labels with precise morphological information for training. However, while this detailed training feedback is not available for the classification approach, in this case the image-level labels may allow the discovery of additional non-morphological cues that are also relevant for the diagnosis. In this work, we propose a novel multi-task approach for the simultaneous classification of glaucoma and segmentation of the optic disc and cup. This approach can improve the overall performance by taking advantage of both pixel-level and image-level labels during the network training. Additionally, the segmentation maps that are predicted together with the diagnosis allow the extraction of relevant biomarkers such as the cup-to-disc ratio. The proposed methodology presents two relevant technical novelties. First, a network architecture for simultaneous segmentation and classification that increases the number of shared parameters between both tasks. Second, a multi-adaptive optimization strategy that ensures that both tasks contribute similarly to the parameter updates during training, avoiding the use of loss weighting hyperparameters. To validate our proposal, an exhaustive experimentation was performed on the public REFUGE and DRISHTI-GS datasets. The results show that our proposal outperforms comparable multi-task baselines and is highly competitive with existing state-of-the-art approaches. Additionally, the provided ablation study shows that both the network architecture and the optimization approach are independently advantageous for multi-task learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZR完成签到,获得积分10
刚刚
Yan0909完成签到,获得积分10
刚刚
沉静白翠发布了新的文献求助10
1秒前
1秒前
2秒前
谦让的博完成签到,获得积分10
2秒前
无花果应助邹秋雨采纳,获得10
2秒前
2秒前
Amyur完成签到,获得积分10
2秒前
wan4221完成签到,获得积分10
3秒前
3秒前
GG发布了新的文献求助10
3秒前
glow完成签到,获得积分10
3秒前
动人的莞发布了新的文献求助100
3秒前
唯有发布了新的文献求助10
4秒前
靴子完成签到,获得积分10
4秒前
完美世界应助Yan0909采纳,获得10
4秒前
脑洞疼应助姬因采纳,获得10
5秒前
打打应助鲤黎黎采纳,获得10
5秒前
我wo发布了新的文献求助10
5秒前
丰富无色完成签到,获得积分10
5秒前
5秒前
cyy发布了新的文献求助10
5秒前
明亮的蝴蝶完成签到,获得积分20
5秒前
程雪霞发布了新的文献求助30
5秒前
轻歌水越发布了新的文献求助10
6秒前
6秒前
自信雪冥完成签到,获得积分10
6秒前
taotie发布了新的文献求助10
7秒前
7秒前
爆米花应助135gcl采纳,获得10
7秒前
Mei完成签到,获得积分10
8秒前
8秒前
8秒前
飞快的寻桃完成签到,获得积分20
8秒前
LucyLi发布了新的文献求助10
8秒前
Left完成签到 ,获得积分10
8秒前
9秒前
高小明发布了新的文献求助10
10秒前
上官若男应助GG采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836