End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images

计算机科学 人工智能 分割 视盘 眼底(子宫) 模式识别(心理学) 任务(项目管理) 青光眼 加权 图像分割 像素 计算机视觉 人工神经网络 深度学习 机器学习 眼科 医学 管理 放射科 经济
作者
Álvaro S. Hervella,José Rouco,Jorge Novo,Marcos Ortega
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:116: 108347-108347 被引量:50
标识
DOI:10.1016/j.asoc.2021.108347
摘要

The automated analysis of eye fundus images is crucial towards facilitating the screening and early diagnosis of glaucoma. Nowadays, there are two common alternatives for the diagnosis of this disease using deep neural networks. One is the segmentation of the optic disc and cup followed by the morphological analysis of these structures. The other is to directly address the diagnosis as an image classification task. The segmentation approach presents the advantage of using pixel-level labels with precise morphological information for training. However, while this detailed training feedback is not available for the classification approach, in this case the image-level labels may allow the discovery of additional non-morphological cues that are also relevant for the diagnosis. In this work, we propose a novel multi-task approach for the simultaneous classification of glaucoma and segmentation of the optic disc and cup. This approach can improve the overall performance by taking advantage of both pixel-level and image-level labels during the network training. Additionally, the segmentation maps that are predicted together with the diagnosis allow the extraction of relevant biomarkers such as the cup-to-disc ratio. The proposed methodology presents two relevant technical novelties. First, a network architecture for simultaneous segmentation and classification that increases the number of shared parameters between both tasks. Second, a multi-adaptive optimization strategy that ensures that both tasks contribute similarly to the parameter updates during training, avoiding the use of loss weighting hyperparameters. To validate our proposal, an exhaustive experimentation was performed on the public REFUGE and DRISHTI-GS datasets. The results show that our proposal outperforms comparable multi-task baselines and is highly competitive with existing state-of-the-art approaches. Additionally, the provided ablation study shows that both the network architecture and the optimization approach are independently advantageous for multi-task learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果新蕾完成签到,获得积分10
刚刚
kevinjy完成签到,获得积分10
刚刚
nn完成签到,获得积分10
刚刚
刚刚
刚刚
zhou完成签到,获得积分20
1秒前
xu完成签到,获得积分10
2秒前
Dithyramb498完成签到,获得积分10
2秒前
3秒前
穆雨驳回了顾矜应助
3秒前
4秒前
科研通AI6应助文文采纳,获得30
5秒前
乐观沛白完成签到,获得积分10
6秒前
gwfew发布了新的文献求助30
6秒前
FashionBoy应助哈哈和采纳,获得10
7秒前
7秒前
Ava应助111111采纳,获得10
7秒前
8秒前
8秒前
李健应助Robigo采纳,获得10
8秒前
酸奶花生完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
hanliulaixi发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
panpan完成签到,获得积分10
12秒前
13秒前
长情诗蕾发布了新的文献求助10
13秒前
徐笑松发布了新的文献求助10
14秒前
14秒前
www完成签到 ,获得积分10
14秒前
赘婿应助哈哈哈采纳,获得10
15秒前
量子星尘发布了新的文献求助10
17秒前
chloe发布了新的文献求助10
17秒前
玩命的靖仇完成签到,获得积分10
17秒前
17秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586348
求助须知:如何正确求助?哪些是违规求助? 4669601
关于积分的说明 14779160
捐赠科研通 4619487
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830