碱度
光合作用
盐度
化学
盐(化学)
植物
生物
生态学
生物化学
有机化学
物理化学
作者
Majid Esmaeilizadeh,Mohammad Reza Malekzadeh,Hamid Reza Roosta,Piotr Dąbrowski,Marcin Rapacz,Andrzej Zieliński,Jacek Wróbel,Hazem M. Kalaji
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2021-12-23
卷期号:16 (12): e0261585-e0261585
被引量:18
标识
DOI:10.1371/journal.pone.0261585
摘要
Strawberry is one of the plants sensitive to salt and alkalinity stress. Light quality affects plant growth and metabolic activities. However, there is no clear answer in the literature on how light can improve the performance of the photosynthetic apparatus of this species under salt and alkalinity stress. The aim of this work was to investigate the effects of different spectra of supplemental light on strawberry (cv. Camarosa) under salt and alkalinity stress conditions. Light spectra of blue (with peak 460 nm), red (with peak 660 nm), blue/red (1:3), white/yellow (1:1) (400-700 nm) and ambient light were used as control. There were three stress treatments: control (no stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Under stress conditions, red and red/blue light had a positive effect on CO2 assimilation. In addition, blue/red light increased intrinsic water use efficiency (WUEi) under both stress conditions. Salinity and alkalinity stress decreased OJIP curves compared to the control treatment. Blue light caused an increase in its in plants under salinity stress, and red and blue/red light caused an increase in its in plants under alkalinity. Both salt and alkalinity stress caused a significant reduction in photosystem II (PSII) performance indices and quantum yield parameters. Adjustment of light spectra, especially red light, increased these parameters. It can be concluded that the adverse effects of salt and alkalinity stress on photosynthesis can be partially alleviated by changing the light spectra.
科研通智能强力驱动
Strongly Powered by AbleSci AI