计算机科学
机制(生物学)
卷积神经网络
人工智能
频道(广播)
任务(项目管理)
空间分析
排列(音乐)
深度学习
多样性(控制论)
机器学习
特征(语言学)
维数(图论)
模式识别(心理学)
计算机网络
工程类
数学
认识论
统计
物理
语言学
哲学
系统工程
纯数学
声学
作者
Yichao Liu,Zongru Shao,Nico Hoffmann
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:137
标识
DOI:10.48550/arxiv.2112.05561
摘要
A variety of attention mechanisms have been studied to improve the performance of various computer vision tasks. However, the prior methods overlooked the significance of retaining the information on both channel and spatial aspects to enhance the cross-dimension interactions. Therefore, we propose a global attention mechanism that boosts the performance of deep neural networks by reducing information reduction and magnifying the global interactive representations. We introduce 3D-permutation with multilayer-perceptron for channel attention alongside a convolutional spatial attention submodule. The evaluation of the proposed mechanism for the image classification task on CIFAR-100 and ImageNet-1K indicates that our method stably outperforms several recent attention mechanisms with both ResNet and lightweight MobileNet.
科研通智能强力驱动
Strongly Powered by AbleSci AI