The controlled synthesis of nitrogen and iron co-doped Ni3S2@NiP2 heterostructures for the oxygen evolution reaction and urea oxidation reaction

析氧 过电位 催化作用 化学 煅烧 分解水 化学工程 电催化剂 无机化学 材料科学 电极 电化学 物理化学 光催化 生物化学 工程类
作者
Jiaxin Li,Hongyi Cui,Xiaoqiang Du,Xiaoshuang Zhang
出处
期刊:Dalton Transactions [Royal Society of Chemistry]
卷期号:51 (6): 2444-2451 被引量:25
标识
DOI:10.1039/d1dt03933d
摘要

At present, global resources are nearly exhausted and environmental pollution is becoming more and more serious, so it is urgent to develop efficient catalysts for hydrogen production. Herein, nitrogen and iron co-doped Ni3S2 and NiP2 heterostructures with high efficiency oxygen evolution reaction (OER) and urea oxidation reaction (UOR) performances were firstly successfully prepared on nickel foam by hydrothermal and high-temperature calcination methods. Benefiting from the hierarchical structure, the exposure of more active sites and the doping effect of N and Fe, the N-Fe-Ni3S2@NiP2/NF material showed excellent electrocatalytic activity for the OER and UOR. The N-Fe-Ni3S2@NiP2/NF material displays excellent catalytic OER performance; the overpotential is only 251 mV to drive 100 mA cm-2 current density, while for the UOR, the potential is only 1.353 V to drive 100 mA cm-2 current density, which is one of the best catalytic activities reported so far. It is worth noting that scanning electron microscopy showed that the surface of N-Fe-Ni3S2@NiP2/NF is rough and has some mesopores, which may have resulted in an increase of active sites during the electrocatalytic process. The N-Fe-Ni3S2@NiP2/NF electrode couple also has relatively long-term durability in alkaline solutions, maintaining a stable current density for 15 h at 1.35 V. The density functional theory (DFT) calculation shows that the in situ generated Fe doped nanooxides exhibit strong water adsorption energy, which may be one of the reasons for the good catalytic activity. Our work is conducive to the rational design of electrocatalysts for efficient hydrogen production from water splitting and wastewater treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13201099463发布了新的文献求助10
1秒前
1秒前
执执完成签到,获得积分10
2秒前
2秒前
小幸运完成签到,获得积分10
2秒前
顾海东完成签到,获得积分20
3秒前
夕风残照发布了新的文献求助10
3秒前
4秒前
可爱的梦松完成签到,获得积分10
5秒前
瘦瘦初夏关注了科研通微信公众号
7秒前
石友瑶发布了新的文献求助10
7秒前
9秒前
9秒前
开朗的睫毛膏完成签到,获得积分10
12秒前
HEIKU应助coffee采纳,获得10
13秒前
陈点点发布了新的文献求助10
14秒前
13201099463完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
啥都不会完成签到,获得积分10
17秒前
思源应助石友瑶采纳,获得10
19秒前
幸福大白发布了新的文献求助10
19秒前
单薄明雪发布了新的文献求助10
19秒前
21秒前
22秒前
科研通AI5应助陈点点采纳,获得10
23秒前
科研通AI2S应助文艺不弱采纳,获得10
23秒前
瘦瘦初夏发布了新的文献求助10
23秒前
今后应助xieyujie采纳,获得10
24秒前
25秒前
MchemG应助科研通管家采纳,获得10
25秒前
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
无误发布了新的文献求助10
26秒前
眭超阳完成签到 ,获得积分10
26秒前
传奇3应助豆腐干v采纳,获得10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
Andrew Duncan Senior: Physician of the Enlightenment 240
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3688987
求助须知:如何正确求助?哪些是违规求助? 3238607
关于积分的说明 9836193
捐赠科研通 2950660
什么是DOI,文献DOI怎么找? 1618094
邀请新用户注册赠送积分活动 764839
科研通“疑难数据库(出版商)”最低求助积分说明 738889