Numerical study of the effect of surface topography on atomization performance in geometrically sensitive areas of centrifugal nozzles

喷嘴 索特平均直径 分手 阀体孔板 机械 表面粗糙度 物理 表面光洁度 流量(数学) 韦伯数 体积流量 材料科学 机械工程 热力学 复合材料 湍流 工程类 雷诺数
作者
Liran Shen,La Qin,Gangyi Fang,Fei Xing,Shining Chan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (1) 被引量:1
标识
DOI:10.1063/5.0078179
摘要

Integral three-dimensional printing of aeroengine fuel nozzles is an emerging trend. However, the large relative roughness of the internal flow paths created by this processing method is problematic. To study the influence of the rough surface morphology on atomization performance in geometrically sensitive areas of centrifugal nozzles, this paper describes numerical simulations of the atomization process of five nozzle models with rough orifice sections. The simulation framework considers a coupled internal and external flow in stages. The macroscopic morphology of the numerically calculated spray field is found to be consistent with experimental results, with maximum errors in the Sauter mean diameter, spray angle, and flow rate of just 8.7%, 3.7%, and 6.1%, respectively. The numerical results show that the nozzle's rough surface morphology in geometrically sensitive areas has a non-negligible impact on the liquid film velocity fluctuations, primary breakup, and secondary atomization characteristics. Indeed, the effect on primary breakup is large, with the maximum difference between the five rough-surface models reaching 22.9%. The effect on secondary atomization is small, with a maximum difference of just 5.7% except in the number of droplets, which has a maximum difference of 22.1%. Among the five rough-surface models, the atomization characteristics of the smooth model differ greatly from those of the real model, whereas a power-function model best reflects the real surface morphology. This study provides new ideas for nozzle performance prediction and optimization, and provides a reference for engineering applications of three-dimensional printed centrifugal nozzles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yana1311完成签到,获得积分10
刚刚
lkc发布了新的文献求助10
刚刚
大气飞丹完成签到 ,获得积分10
刚刚
调研昵称发布了新的文献求助10
刚刚
yu完成签到 ,获得积分10
1秒前
Lvj发布了新的文献求助10
1秒前
英俊的铭应助lanjq兰坚强采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
含蓄的鹤发布了新的文献求助10
2秒前
2秒前
受伤访波完成签到,获得积分10
3秒前
香蕉觅云应助亻鱼采纳,获得10
3秒前
欢欢发布了新的文献求助10
3秒前
慕青应助研友_Z1WvKL采纳,获得10
3秒前
3秒前
多情怜蕾完成签到,获得积分10
4秒前
4秒前
AD发布了新的文献求助10
5秒前
谢朝邦发布了新的文献求助10
5秒前
科研通AI5应助玲珑油豆腐采纳,获得10
5秒前
5秒前
wjh发布了新的文献求助10
5秒前
Lucky完成签到,获得积分10
6秒前
谨慎涵柏发布了新的文献求助10
6秒前
SciGPT应助心灵美发卡采纳,获得10
6秒前
彩色的蓝天完成签到,获得积分10
6秒前
hbb发布了新的文献求助10
6秒前
3137874883发布了新的文献求助10
8秒前
蒋若风发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
狗剩子完成签到,获得积分10
8秒前
Lvj完成签到,获得积分10
9秒前
bkagyin应助马保国123采纳,获得10
9秒前
9秒前
10秒前
大个应助乐观的幼珊采纳,获得10
10秒前
10秒前
10秒前
10秒前
顺顺完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759