Big-Hypergraph Factorization Neural Network for Survival Prediction From Whole Slide Image.

计算机科学 人工神经网络 人工智能 机器学习 深度学习 图像(数学) 模式识别(心理学) 循环神经网络 因式分解
作者
Donglin Di,Jun Zhang,Fuqiang Lei,Qi Tian,Yue Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1149-1160
标识
DOI:10.1109/tip.2021.3139229
摘要

Survival prediction for patients based on histopa- thological whole-slide images (WSIs) has attracted increasing attention in recent years. Due to the massive pixel data in a single WSI, fully exploiting cell-level structural information (e.g., stromal/tumor microenvironment) from the gigapixel WSI is challenging. Most of the current studies resolve the problem by sampling limited image patches to construct a graph-based model (e.g., hypergraph). However, the sampling scale is a critical bottleneck since it is a fundamental obstacle of broadening samples for transductive learning. To overcome the limitation of the sampling scale for constructing a big hypergraph model, we propose a factorization neural network that embeds the correlation among large-scale vertices and hyperedges into two low-dimensional latent semantic spaces separately, empowering the dense sampling. Thanks to the compressed low-dimensional correlation embedding, the hypergraph convolutional layers generate the high-order global representation for each WSI. To minimize the effect of the uncertainty data as well as to achieve the metric-driven learning, we also propose a multi-level ranking supervision to enable the network learning by a queue of patients on the global horizon. Extensive experiments are conducted on three public carcinoma datasets (i.e., LUSC, GBM, and NLST), and the quantitative results demonstrate the proposed method outperforms state-of-the-art methods across-the-board.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
呃呃呃发布了新的文献求助10
1秒前
二三完成签到,获得积分10
2秒前
啦啦啦完成签到,获得积分10
2秒前
白皮憨憨完成签到,获得积分10
2秒前
沐橘完成签到,获得积分10
2秒前
鱼儿发布了新的文献求助30
2秒前
任小九发布了新的文献求助20
2秒前
紫金大萝卜完成签到,获得积分0
4秒前
平淡星星发布了新的文献求助10
4秒前
山野村夫完成签到,获得积分10
4秒前
NCUlihui发布了新的文献求助10
5秒前
6秒前
cwt完成签到,获得积分10
6秒前
.。。完成签到,获得积分10
7秒前
7秒前
creNdro发布了新的文献求助10
7秒前
8秒前
juncguo完成签到,获得积分10
8秒前
一棵完成签到,获得积分10
9秒前
Lucas应助万木采纳,获得10
9秒前
白色圣诞节完成签到,获得积分20
9秒前
完美世界应助骆風采纳,获得10
9秒前
Xiaohu完成签到,获得积分10
10秒前
10秒前
10秒前
mumuaidafu发布了新的文献求助10
11秒前
鱼儿完成签到,获得积分10
11秒前
keyandog完成签到,获得积分10
12秒前
叶舟完成签到,获得积分10
12秒前
可乐完成签到,获得积分10
12秒前
虞访云完成签到,获得积分10
13秒前
迷人尔蓝发布了新的文献求助10
13秒前
kangyan发布了新的文献求助10
13秒前
萌兰完成签到,获得积分10
13秒前
zh完成签到,获得积分10
14秒前
14秒前
坦率的草丛完成签到,获得积分10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102