A transcriptomic signature that predicts cancer recurrence after hepatectomy in patients with colorectal liver metastases

医学 危险系数 内科学 比例危险模型 肿瘤科 结直肠癌 肝切除术 置信区间 基因签名 转移 临床意义 多元分析 癌症 外科 基因 基因表达 切除术 化学 生物化学
作者
Yuma Wada,Mitsuo Shimada,Yuji Morine,Tetsuya Ikemoto,Hideo Baba,Masaki Mori,Ajay Goel
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:163: 66-76 被引量:4
标识
DOI:10.1016/j.ejca.2021.12.013
摘要

Abstract

Background

Cancer recurrence is an important predictor of survival outcomes in patients with colorectal cancer-associated liver metastasis (CRLM), who undergo radical hepatectomy. Therefore, identification of patients with the greatest risk of recurrence is critical for developing a precision oncology strategy that might include frequent surveillance (in low-risk patients) or a more aggressive treatment approach (in high-risk patients). We performed genome-wide expression profiling, to identify and develop a transcriptomic signature for predicting recurrence in patients with CRLM.

Methods

We analysed a total of 383 patients with CRLM, including 63 patients from a publicly available data set (the NCBI's Gene Expression Omnibus with accession number GSE81423). and 320 patients from whom surgical specimens were collected for independent training (n = 169) and validation (n = 151) of identified biomarkers. Using Cox's proportional hazard regression analysis, we evaluated the clinical significance of the identified gene signature by comparing its performance with several key clinical factors.

Results

We identified a six-gene panel that robustly categorised patients with recurrence in the discovery (area under the curve (AUC) = 0.90). We showed that the panel was a significant predictor of recurrence in the clinical training (AUC = 0.83) and validation cohorts (AUC = 0.81). By combining our panel with key clinical factors, we established a risk-stratification model that emerged as an independent predictor of recurrence (AUC = 0.85; univariate: hazard ratio (HR) = 4.34, 95% confidence interval (CI) = 2.71–6.93, P < 0.001; multivariate: HR = 3.40, 95% CI = 1.76–6.56, P < 0.001). The stratification model revealed recurrence prediction in 89% of high-risk group and non-recurrence in 62% of low-risk group.

Conclusions

We established a novel transcriptomic signature that robustly predicts recurrence, which has significant implications for the management of patients with CRLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助稳重的山柏采纳,获得10
1秒前
2秒前
请叫我风吹麦浪应助hh采纳,获得10
3秒前
4秒前
愤怒的茉莉完成签到,获得积分10
5秒前
ZIS完成签到,获得积分10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
弄啥嘞昂应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助恶恶么v采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
不安青牛应助科研通管家采纳,获得10
7秒前
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得30
7秒前
yolo39应助科研通管家采纳,获得10
7秒前
金金完成签到,获得积分20
7秒前
所所应助科研通管家采纳,获得10
7秒前
弄啥嘞昂应助科研通管家采纳,获得10
8秒前
弄啥嘞昂应助科研通管家采纳,获得10
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助愤怒的茉莉采纳,获得10
9秒前
9秒前
9秒前
打打应助zhaozhao采纳,获得10
10秒前
心型尤加利完成签到,获得积分10
10秒前
10秒前
10秒前
微冷完成签到,获得积分20
11秒前
11秒前
惘自完成签到 ,获得积分10
12秒前
劲秉应助jovrtic采纳,获得20
13秒前
领导范儿应助han采纳,获得10
14秒前
豆皮发布了新的文献求助10
15秒前
落寞丹萱发布了新的文献求助10
17秒前
kk发布了新的文献求助20
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465722
求助须知:如何正确求助?哪些是违规求助? 3058710
关于积分的说明 9063033
捐赠科研通 2749131
什么是DOI,文献DOI怎么找? 1508371
科研通“疑难数据库(出版商)”最低求助积分说明 696885
邀请新用户注册赠送积分活动 696579