Generalised spatially weighted autocorrelation approach for monitoring and diagnosing faults in 3D topographic surfaces

空间分析 阈值 计算机科学 稳健性(进化) 自相关 数据挖掘 曲面(拓扑) 人工智能 模式识别(心理学) 算法 数学 图像(数学) 地质学 遥感 几何学 基因 统计 生物化学 化学
作者
Mejdal A. Alqahtani,Myong K. Jeong,Elsayed A. Elsayed
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:61 (2): 541-558 被引量:1
标识
DOI:10.1080/00207543.2021.2010825
摘要

Digital transformation driven by artificial intelligence (AI) allows Industry 4.0 and the internet of things (IIoT) to make significant advancements in automating, controlling, and improving the quality of numerous manufacturing processes. Three-dimensional (3D) surface topography of manufactured products holds important information about the quality of manufacturing processes. Surface topography consists of unique properties, which makes the current monitoring approaches ineffective in identifying local and spatial surface faults. In this paper, we develop a generalised spatially weighted autocorrelation approach based on AI for monitoring changes in products based on their 3D topographic surfaces. We propose two effective algorithms to identify and assign spatial weights to the topographic regions with suspicious characteristics. The normal surface hard thresholding algorithm initially enhances the representation of surface characteristics through binarization, followed by the normal surface connected-component labelling algorithm, which utilises the obtained binary results to identify and assign spatial weights to the suspicious regions. We then introduce a generalised spatially weighted Moran index, which exploits the assigned weights to locally characterise and monitor changes in the spatial autocorrelation structure of identified regions. After an anomaly surface is detected, we extract different fault diagnostic information. The proposed approach proves its robustness and efficiency in characterising, monitoring, and diagnosing different patterns of faults in 3D topographic surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研废物完成签到 ,获得积分10
3秒前
李爱国应助火龙果采纳,获得10
4秒前
fdawn完成签到 ,获得积分10
5秒前
6秒前
8秒前
9秒前
张张完成签到,获得积分20
11秒前
12秒前
万能图书馆应助zxh123采纳,获得10
13秒前
123发布了新的文献求助10
14秒前
CodeCraft应助Leoniko采纳,获得10
14秒前
小灰灰完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
17秒前
宋鹏浩发布了新的文献求助10
17秒前
18秒前
20秒前
20秒前
21秒前
公孙世往发布了新的文献求助10
21秒前
Lsy完成签到,获得积分10
22秒前
火龙果发布了新的文献求助10
23秒前
Leoniko完成签到,获得积分10
23秒前
FashionBoy应助张张采纳,获得10
25秒前
bb完成签到,获得积分10
25秒前
zxh123发布了新的文献求助10
26秒前
水水完成签到,获得积分10
26秒前
曾经的帅哥完成签到,获得积分10
27秒前
YF是杨芳完成签到 ,获得积分10
27秒前
鱼蛋丸子完成签到,获得积分10
28秒前
Ava应助123采纳,获得10
29秒前
Milk关注了科研通微信公众号
29秒前
火龙果完成签到,获得积分10
32秒前
32秒前
32秒前
33秒前
FashionBoy应助阔落采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388