Associations between gut microbiota composition and AD biomarkers

肠道菌群 逻辑回归 痴呆 优势比 医学 内科学 曲线下面积 微生物群 疾病 生物 免疫学 生物信息学
作者
Barbara J. H. Verhaar,Heleen M.A. Hendriksen,Francisca A. de Leeuw,Astrid S. Doorduijn,Mardou van Leeuwenstijn,Charlotte E. Teunissen,Bart N.M. van Berckel,Frederik Barkhof,Philip Scheltens,Robert Kraaij,Cornelia M. van Duijn,Max Nieuwdorp,Majon Muller,Wiesje M. van der Flier
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (S5) 被引量:1
标识
DOI:10.1002/alz.057781
摘要

Abstract Background Several studies have reported alterations in gut microbiota composition of Alzheimer’s disease (AD) patients. However, the observed differences are not consistent across studies. We aimed to investigate associations between gut microbiota composition and clinical biomarkers of AD using machine learning models in patients with AD dementia, mild cognitive impairment (MCI) and controls. Method We included 169 patients from the NUDAD project, comprising 33 with AD dementia (66±8 years, 46%F, MMSE 21[19‐24]), 21 with MCI (64±8 years, 43%F, MMSE 27[25‐29]) and 115 controls (62±8 years, 44%F, MMSE 29[28‐30]). Fecal samples were collected and gut microbiome composition was determined using 16S rRNA sequencing. Clinical parameters of AD included clinical diagnosis, cerebral spinal fluid (CSF) amyloid and phosphorylated tau (pTau) status, positron emission tomography (PET) amyloid status, and MRI visual scores. Associations between gut microbiota composition and dichotomized clinical parameters of AD were assessed with separate machine learning classification models using XGBoost with nested cross‐validation. The model with the highest area under the curve (AUC) was selected for logistic regression, to assess associations between the 20 best predicting microbes (cumulative sum scaled counts) and the outcome measure from this machine learning model while adjusting for age, sex, and BMI. Result The machine learning prediction for amyloid status (CSF) from microbiota composition had the highest AUC. Top predicting microbes included several short chain fatty acid (SCFA)‐producing species. In the logistic regression models, these microbes were significantly associated with lower odds of amyloid positive status, and included Eubacterium ventriosum group spp. (OR 0.49 (0.30‐0.76) per SD increase in counts, p = 0.002), Marvinbryantia spp. (OR 0.55 (0.34‐0.85), p = 0.009), Coprococcus catus (OR 0.58 (0.36‐0.89), p = 0.017), Roseburia hominis (OR 0.59 (0.38‐0.90), p = 0.018), Odoribacter splanchnicus (OR 0.51 (0.30‐0.82), p = 0.008), Lachnospiraceae spp. (OR 0.58 (0.36‐0.89), p = 0.014), and Ruminococcaceae spp. (OR 0.44 (0.25‐0.71), p = 0.002). Conclusion Gut microbiota composition had the strongest association with amyloid status among the clinical biomarkers examined. We extend on recent studies that observed associations between SCFA levels and AD biomarkers by showing that higher abundances of SCFA‐producing microbes were associated with lower odds of amyloid positive status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助陶醉觅夏采纳,获得10
1秒前
1秒前
独特凡松完成签到,获得积分10
1秒前
木笔朱瑾完成签到 ,获得积分10
2秒前
Rinohalt完成签到,获得积分10
2秒前
3秒前
孙梁子完成签到,获得积分10
3秒前
核桃花生奶兔完成签到 ,获得积分10
4秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
5秒前
6秒前
孙奕发布了新的文献求助10
6秒前
xiaotian_fan完成签到,获得积分10
6秒前
8秒前
8秒前
科研通AI2S应助laochen采纳,获得10
8秒前
盘尼西林发布了新的文献求助10
8秒前
迟大猫应助专心搞学术采纳,获得10
9秒前
11秒前
孙奕完成签到,获得积分10
12秒前
12秒前
俟天晴完成签到,获得积分10
12秒前
淡定问芙发布了新的文献求助30
13秒前
15秒前
Lewis完成签到,获得积分10
16秒前
orixero应助TranYan采纳,获得10
16秒前
猪猪hero发布了新的文献求助10
18秒前
19秒前
今后应助333采纳,获得10
20秒前
pu发布了新的文献求助10
21秒前
Akim应助梓榆采纳,获得10
22秒前
劼大大完成签到,获得积分10
22秒前
最优解完成签到 ,获得积分20
23秒前
23秒前
通~发布了新的文献求助10
23秒前
一段乐多完成签到,获得积分10
24秒前
24秒前
24秒前
给我找完成签到,获得积分10
25秒前
桐桐应助Yuki0616采纳,获得10
25秒前
小马甲应助鸣隐采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794