Alleviating ASR Long-Tailed Problem by Decoupling the Learning of Representation and Classification

Softmax函数 计算机科学 人工智能 分类器(UML) 推论 语音识别 特征学习 字错误率 序列学习 模式识别(心理学) 深度学习
作者
Keqi Deng,Gaofeng Cheng,Runyan Yang,Yonghong Yan
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 340-354 被引量:6
标识
DOI:10.1109/taslp.2021.3138707
摘要

Recently, we have witnessed excellent improvement of end-to-end (E2E) automatic speech recognition (ASR). However, how to tackle the long-tailed data distribution problem while maintaining E2E ASR models' performance for high-frequency tokens is still challenging. To solve this challenge, we propose a novel decoupled ASR learning method for the sequence-to-sequence ASR architecture in this paper. Our method decouples the learning procedure of this model into two stages: representation learning and classification learning. In the representation learning stage, we use the encoder output of a pretrained language model as one of the ASR model’s learning targets, and propose threshold log cosine embedding loss (TLCE-loss) as the objective function. A frequency-mask cross-entropy loss (FMCE-loss) is also designed as an auxiliary loss. In the classification learning stage, we find that introducing a temperature into softmax function helps reduce the influence of negative samples on tail classes, thus mitigating the biased learning process for the classifier. Furthermore, we propose a weighted softmax (w-softmax) to adjust ASR posterior probabilities according to the token appearing frequency during inference. Additionally, we introduce tail word/character error rate (TWER / TCER) and head word/character error rate (HWER / HCER) that respectively evaluate the ASR accuracy for tail and head words/characters. Experimental results on the Switchboard and HKUST corpora show that our proposed method greatly outperforms the baseline, especially in TWER / TCER reduction. To the best of our knowledge, this is the first work to use a decoupled ASR learning method to alleviate the long-tailed problem in sequence-to-sequence ASR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助王乐乐采纳,获得30
刚刚
cooyuan发布了新的文献求助10
刚刚
小二郎应助long采纳,获得10
刚刚
yrw完成签到,获得积分10
1秒前
sunflower应助ww采纳,获得10
1秒前
1秒前
鲤鱼一鸣完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
CYC完成签到 ,获得积分10
3秒前
Jc发布了新的文献求助20
3秒前
3秒前
忧郁凡灵完成签到,获得积分10
3秒前
3秒前
孙燕应助忧伤的天真采纳,获得10
4秒前
为你博弈发布了新的文献求助10
6秒前
大道无形我有型完成签到,获得积分10
6秒前
7秒前
7秒前
up发布了新的文献求助10
7秒前
7秒前
GQ发布了新的文献求助10
7秒前
8秒前
寻梦完成签到,获得积分10
9秒前
学术老6完成签到,获得积分10
10秒前
挽风风风风完成签到,获得积分10
10秒前
酷波er应助awei采纳,获得10
10秒前
10秒前
师宁发布了新的文献求助10
11秒前
壮观素完成签到,获得积分10
11秒前
11秒前
CPF发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
朱问安发布了新的文献求助10
13秒前
zcy发布了新的文献求助10
14秒前
小涵发布了新的文献求助10
14秒前
GP完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597