亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A discrete event simulation-based methodology for building a digital twin of patient pathways in the hospital for near real-time monitoring and predictive simulation

过程(计算) 计算机科学 操作系统
作者
Abdallah Karakra,Franck Fontanili,Elyes Lamine,Jacques Lamothe
出处
期刊:Digital twin 卷期号:2: 1-1 被引量:6
标识
DOI:10.12688/digitaltwin.17454.1
摘要

Background: Discrete Event Simulation (DES) is one of the many tools and methods used in the analysis and improvement of healthcare services. Indeed, DES provides perhaps the most powerful and intuitive method for analyzing, evaluating, and improving complex healthcare systems. This paper highlights the process of developing a Digital Twin (DT) framework based on online DES to run the DES model in parallel with the real world in real-time. Methods: This paper suggests a new methodology that uses DES connected to the Internet of Things (IoT) devices to build a DT platform of patient pathways in a hospital for near real-time monitoring and predictive simulation. An experimental platform that mimics the behavior of a hospital has been used to validate this methodology. Results: The application of the proposed methodology allowed us to test the monitoring functionality in the DT. Therefore, we noticed that the DT behaves exactly as the emulator does in near real-time, we also tested the prediction functionality and we noticed that the DT provides us with a proactive overview for the near future of the patient pathways. The predictive functionality of this DT must be improved depending on the various reasons mentioned in this article. Conclusions: This paper presents a new methodology called HospiT'Win that uses DES and IoT devices to develop a DT of patient pathways in hospitals. This DT consists of two real-time models, a DT for Monitoring (DTM) and a DT for Predicting (DTP). An experimental platform with an emulator of a real hospital was used to validate this methodology before connecting to the real hospital. In the DTP, "dynamic" empirical distributions were used to perform a predictive simulation for the near future. In future research, some additional features and machine learning algorithms will be used to improve the proposed DT models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助害羞的采波采纳,获得10
5秒前
Marciu33完成签到,获得积分10
10秒前
TheaGao完成签到,获得积分10
21秒前
21秒前
26秒前
41秒前
twk发布了新的文献求助10
46秒前
充电宝应助科研通管家采纳,获得10
50秒前
MchemG应助科研通管家采纳,获得10
50秒前
MchemG应助科研通管家采纳,获得10
50秒前
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
Lucas应助科研通管家采纳,获得10
51秒前
MchemG应助科研通管家采纳,获得10
51秒前
慕青应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
MchemG应助科研通管家采纳,获得10
51秒前
大个应助twk采纳,获得10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
小杏韵发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
bonster应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得150
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
回笼觉教主完成签到,获得积分20
3分钟前
aslink完成签到,获得积分10
3分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
andrele应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
bonster应助科研通管家采纳,获得10
4分钟前
PAIDAXXXX完成签到,获得积分10
5分钟前
Xiaoping完成签到 ,获得积分10
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
Marciu33发布了新的文献求助10
6分钟前
6分钟前
ataybabdallah发布了新的文献求助10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228122
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991