Can Deep Reinforcement Learning Improve Inventory Management? Performance on Lost Sales, Dual-Sourcing, and Multi-Echelon Problems

强化学习 计算机科学 启发式 马尔可夫决策过程 销售损失 对偶(语法数字) 存货理论 库存管理 运筹学 多样性(控制论) 数学优化 供应链 人工智能 库存控制 供应链管理 运营管理 马尔可夫过程 经济 营销 数学 业务 艺术 文学类 操作系统 统计
作者
Joren Gijsbrechts,Robert Boute,Jan A. Van Mieghem,Dennis Zhang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (3): 1349-1368 被引量:56
标识
DOI:10.1287/msom.2021.1064
摘要

Problem definition: Is deep reinforcement learning (DRL) effective at solving inventory problems? Academic/practical relevance: Given that DRL has successfully been applied in computer games and robotics, supply chain researchers and companies are interested in its potential in inventory management. We provide a rigorous performance evaluation of DRL in three classic and intractable inventory problems: lost sales, dual sourcing, and multi-echelon inventory management. Methodology: We model each inventory problem as a Markov decision process and apply and tune the Asynchronous Advantage Actor-Critic (A3C) DRL algorithm for a variety of parameter settings. Results: We demonstrate that the A3C algorithm can match the performance of the state-of-the-art heuristics and other approximate dynamic programming methods. Although the initial tuning was computationally demanding and time demanding, only small changes to the tuning parameters were needed for the other studied problems. Managerial implications: Our study provides evidence that DRL can effectively solve stationary inventory problems. This is especially promising when problem-dependent heuristics are lacking. Yet, generating structural policy insight or designing specialized policies that are (ideally provably) near optimal remains desirable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lwj完成签到,获得积分10
2秒前
beautyy完成签到,获得积分10
5秒前
5秒前
Orange应助PANSIXUAN采纳,获得10
5秒前
!!发布了新的文献求助10
6秒前
7秒前
酷炫小懒虫完成签到,获得积分10
8秒前
爆米花应助orange9采纳,获得10
9秒前
mitty发布了新的文献求助10
10秒前
整齐芷文完成签到,获得积分10
10秒前
斯文败类应助FANGQUAN采纳,获得10
10秒前
11秒前
万能图书馆应助松鼠15111采纳,获得10
11秒前
明理友容发布了新的文献求助10
11秒前
bkagyin应助宓之云采纳,获得10
12秒前
12秒前
!!完成签到,获得积分10
12秒前
FashionBoy应助大气的谷梦采纳,获得10
14秒前
14秒前
16秒前
17秒前
orange9发布了新的文献求助10
18秒前
Foremelon发布了新的文献求助10
20秒前
NL发布了新的文献求助10
20秒前
宓之云完成签到,获得积分10
22秒前
22秒前
su关注了科研通微信公众号
22秒前
23秒前
24秒前
宓之云发布了新的文献求助10
25秒前
27秒前
极意完成签到 ,获得积分10
27秒前
surou完成签到,获得积分10
28秒前
defupai发布了新的文献求助10
30秒前
您吃了莓发布了新的文献求助10
30秒前
32秒前
繁荣的秋发布了新的文献求助10
32秒前
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267506
求助须知:如何正确求助?哪些是违规求助? 2906911
关于积分的说明 8340161
捐赠科研通 2577520
什么是DOI,文献DOI怎么找? 1401068
科研通“疑难数据库(出版商)”最低求助积分说明 654998
邀请新用户注册赠送积分活动 633947